Proposition 9.2.1.23. Let $\kappa \leq \lambda < \mu $ be regular cardinals, where $\mu $ has exponential cofinality $\geq \lambda $. Then the functor
\[ \operatorname{Ind}_{\kappa }^{\lambda }: \operatorname{\mathcal{QC}}_{< \mu } \rightarrow \operatorname{\mathcal{QC}}_{< \mu } \]
is $(\lambda , \mu )$-finitary: that is, it commutes with $\mu $-small $\lambda $-filtered colimits.