Definition 9.2.4.1. Let $\operatorname{\mathcal{D}}$ be an $\infty $-category. We say that a functor $\mathscr {F}: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{S}}$ is flat if if the $\infty $-category of elements $\int _{\operatorname{\mathcal{D}}} \mathscr {F}$ is cofiltered (see Definition 5.6.2.1). We let $\operatorname{Fun}^{\flat }(\operatorname{\mathcal{D}}, \operatorname{\mathcal{S}})$ denote the full subcategory of $\operatorname{Fun}(\operatorname{\mathcal{D}}, \operatorname{\mathcal{S}})$ spanned by the flat functors.
9.2.4 Flat Functors
In §9.2.1, we observed that every $\infty $-category $\operatorname{\mathcal{C}}$ admits an $\operatorname{Ind}$-completion $\operatorname{Ind}(\operatorname{\mathcal{C}})$ (Notation 9.2.1.2). Our goal in this section is to give a more explicit description of $\operatorname{Ind}(\operatorname{\mathcal{C}})$ in the case where $\operatorname{\mathcal{C}}$ is essentially small.
Remark 9.2.4.2. Definition 9.2.4.1 has a counterpart in classical category theory. If $\operatorname{\mathcal{D}}$ is an ordinary category, we say that a functor $\mathscr {F}: \operatorname{\mathcal{D}}\rightarrow \operatorname{Set}$ is flat if the category of elements $\int _{\operatorname{\mathcal{D}}} \mathscr {F}$ is cofiltered (Definition 5.2.6.1). It follows from Corollary 9.1.2.8 that this is condition is satisfied if and only if the nerve is a flat functor of $\infty $-categories, in the sense of Definition 9.2.4.1. We will see below that, up to isomorphism, every flat functor $\operatorname{N}_{\bullet }(\operatorname{\mathcal{D}}) \rightarrow \operatorname{\mathcal{S}}$ can be obtained in this way (Remark 9.2.4.18). Consequently, Definition 9.2.4.1 can be regarded as a generalization of its classical counterpart.
Example 9.2.4.3 (Flat Modules as Flat Functors). Let $R$ be an associative ring and let $\operatorname{\mathcal{C}}$ be the category of free left $R$-modules of finite rank. Then a functor $\mathscr {F}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{Set}$ is flat if and only if it has the form we see that a functor $\mathscr {F}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{Set}$ is flat if and only if it has the form $\operatorname{Hom}_{R}( \bullet , M)$, where $M$ is a flat left $R$-module. This is a reformulation of Lazard's characterization of flat modules (Variant 9.2.3.9), by virtue of Remark 9.2.4.6 below.
Warning 9.2.4.4. The notion of flat functor $\mathscr {F}: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{S}}$ introduced in Definition 9.2.4.1 is unrelated to the notion of flat inner fibration $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ introduced in Definition 8.7.6.1.
We can now state a preliminary version of our main result:
Proposition 9.2.4.5. Let $\operatorname{\mathcal{C}}$ be an essentially small $\infty $-category. Then the convariant Yoneda embedding $h_{\bullet }: \operatorname{\mathcal{C}}\rightarrow \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}})$ factors through $\operatorname{Fun}^{\flat }( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}})$, and exhibits $\operatorname{Fun}^{\flat }( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}})$ as an $\operatorname{Ind}$-completion of $\operatorname{\mathcal{C}}$ (in the sense of Definition 9.2.1.1).
Remark 9.2.4.6. Let $\operatorname{\mathcal{C}}$ be an essentially small $\infty $-category, and let us abuse notation by identifying $\operatorname{\mathcal{C}}$ with a full subcategory of $\operatorname{Ind}(\operatorname{\mathcal{C}})$. Stated more informally, Proposition 9.2.4.5 asserts that the functor is fully faithful, and that its essential image is spanned by the flat functors from $\operatorname{\mathcal{C}}^{\operatorname{op}}$ to $\operatorname{\mathcal{S}}$. In particular, a functor $\mathscr {F}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{S}}$ is flat if and only if it is representable by an object of $\operatorname{Ind}(\operatorname{\mathcal{C}})$.
Definition 9.2.4.1 is a special case of the following:
Definition 9.2.4.7. Let $\operatorname{\mathcal{D}}$ be an $\infty $-category and let $\kappa $ and $\lambda $ be regular cardinals, where $\lambda $ is uncountable. We say that a functor $\mathscr {F}: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{S}}_{< \lambda }$ is $\kappa $-flat if the $\infty $-category of elements $\int _{\operatorname{\mathcal{D}}} \mathscr {F}$ is $\kappa $-cofiltered (Definition 9.1.1.4). We let $\operatorname{Fun}^{\kappa -\flat }( \operatorname{\mathcal{D}}, \operatorname{\mathcal{S}}_{< \lambda } )$ denote the full subcategory of $\operatorname{Fun}( \operatorname{\mathcal{D}}, \operatorname{\mathcal{S}}_{< \lambda } )$ spanned by those functors which are $\kappa $-flat.
Remark 9.2.4.8. In the situation of Definition 9.2.4.7, any functor from $\operatorname{\mathcal{D}}$ to $\operatorname{\mathcal{S}}_{< \lambda }$ can also be regarded as a functor from $\operatorname{\mathcal{D}}$ to $\operatorname{\mathcal{S}}_{< \lambda '}$, for any $\lambda ' \geq \lambda $. In this case, replacing $\lambda $ by $\lambda '$ does not change the $\infty $-category of elements $\int _{\operatorname{\mathcal{D}}} \mathscr {F}$. Consequently, the condition that $\mathscr {F}$ is $\kappa $-flat does not depend on $\lambda $.
Example 9.2.4.9. A functor of $\infty $-categories $\mathscr {F}: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{S}}$ is flat (in the sense of Definition 9.2.4.1) if and only if it is $\aleph _0$-flat (in the sense of Definition 9.2.4.7).
Remark 9.2.4.10 (Monotonicity). Let $\lambda $ be an uncountable cardinal and let $\mathscr {F}: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{S}}_{< \lambda }$ be a functor of $\infty $-categories. If $\mathscr {F}$ is $\kappa $-flat (for some regular cardinal $\kappa $), then it is also $\kappa '$-flat for every regular cardinal $\kappa ' \leq \kappa $ (see Remark 9.1.1.9). In particular, every $\kappa $-flat functor $\mathscr {F}: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{S}}_{< \lambda }$ is flat.
Example 9.2.4.11 (Corepresentable Functors). Let $\lambda $ be an uncountable cardinal and let $\operatorname{\mathcal{D}}$ be an $\infty $-category. If $\mathscr {F}: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{S}}_{< \lambda }$ is corepresentable by an object of $\operatorname{\mathcal{D}}$, then it is $\kappa $-flat for every regular cardinal $\kappa $: this follows from Example 9.1.1.6, since the $\infty $-category $\int _{\operatorname{\mathcal{D}}} \mathscr {F}$ has an initial object (Proposition 5.6.6.21).
Remark 9.2.4.12. Example 9.2.4.11 admits a partial converse. Let $\lambda $ be an uncountable regular cardinal and let $\operatorname{\mathcal{D}}$ be an idempotent complete $\infty $-category $\infty $-category which is essentially $\lambda $-small. For any functor $\mathscr {F}: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{S}}_{< \lambda }$, the $\infty $-category of elements $\int _{\operatorname{\mathcal{D}}} \mathscr {F}$ is also idempotent complete (Corollary 8.5.4.24) and essentially $\lambda $-small (Corollary 4.7.9.12). It follows that $\int _{\operatorname{\mathcal{D}}} \mathscr {F}$ is $\lambda $-cofiltered if and only if it has an initial object (Proposition 9.1.8.10). In other words, $\mathscr {F}$ $\lambda $-flat if and only if it is corepresentable. More generally, if we assume that $\operatorname{\mathcal{D}}$ is essentially $\lambda $-small (but not necessarily idempotent complete), then a functor $\mathscr {F}: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{S}}_{< \lambda }$ is $\lambda $-flat if and only if it is a retract of a corepresentable functor. This follows from Theorem 9.2.4.14 (applied in the special case $\kappa = \lambda $), together with Example 9.2.1.10.
Remark 9.2.4.13. Let $\lambda $ be an uncountable regular cardinal and let $\mathscr {F}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{S}}_{< \lambda }$ be a functor of $\infty $-categories. Then $\mathscr {F}$ can be realized as the contravariant transport representation of a right fibration $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$, which is well-defined up to equivalence (Proposition 8.6.8.3). In this case, the functor $\mathscr {F}$ is $\kappa $-flat (in the sense of Definition 9.2.4.7) if and only if the $\infty $-category $\operatorname{\mathcal{E}}$ is $\kappa $-filtered (in the sense of Variant 9.1.1.4). In particular, if $\operatorname{\mathcal{C}}$ is locally $\lambda $-small and $h_{\bullet }: \operatorname{\mathcal{C}}\rightarrow \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{< \lambda })$ is a covariant Yoneda embedding for $\operatorname{\mathcal{C}}$, then $\mathscr {F}$ is $\kappa $-flat if and only if the $\infty $-category $\operatorname{\mathcal{C}}\times _{ \operatorname{Fun}(\operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{< \lambda }) } \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{< \lambda })_{ / \mathscr {F} }$ is $\kappa $-filtered. See Corollary 8.4.2.7.
Let $\lambda $ be an uncountable regular cardinal and let $\operatorname{\mathcal{C}}$ be an $\infty $-category which is locally $\lambda $-small. It follows from Example 9.2.4.11 that the covariant Yoneda embedding
factors through the full subcategory $\operatorname{Fun}^{\kappa -\flat }( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{< \lambda } )$, for every regular cardinal $\kappa $. Following the convention of Remark 4.7.0.5, we can regard Proposition 9.2.4.5 as a special case of the following:
Theorem 9.2.4.14. Let $\kappa \leq \lambda $ be regular cardinals, where $\lambda $ is uncountable, and let $\operatorname{\mathcal{C}}$ be an $\infty $-category which is essentially $\lambda $-small. Then the convariant Yoneda embedding $h_{\bullet }: \operatorname{\mathcal{C}}\rightarrow \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{< \lambda })$ factors through $\operatorname{Fun}^{\kappa -\flat }( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{<\lambda })$, and exhibits $\operatorname{Fun}^{\kappa -\flat }( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{<\lambda })$ as an $\operatorname{Ind}_{\kappa }^{\lambda }$-completion of $\operatorname{\mathcal{C}}$ (in the sense of Variant 9.2.1.7).
The proof of Theorem 9.2.4.14 will require some preliminaries.
Lemma 9.2.4.15. Let $\lambda $ be an uncountable regular cardinal and let $\operatorname{\mathcal{C}}$ be an $\infty $-category which is essentially $\lambda $-small. Then there exists a $\lambda $-cocontinuous functor which carries each $\mathscr {F}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{S}}_{< \lambda }$ to an $\infty $-category $\operatorname{\mathcal{E}}_{\mathscr {F}}$ which is equipped with a right fibration $\operatorname{\mathcal{E}}_{\mathscr {F}} \rightarrow \operatorname{\mathcal{C}}$ having contravariant transport representation $\mathscr {F}$.
Proof. Let $\operatorname{\mathcal{E}}$ denote the oriented fiber product $\operatorname{\mathcal{C}}\operatorname{\vec{\times }}_{ \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{< \lambda } ) } \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{< \lambda } )$, and let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ and $V: \operatorname{\mathcal{E}}\rightarrow \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{< \lambda } )$ be the projection maps. For each object $\mathscr {F} \in \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{< \lambda } )$, let $\operatorname{\mathcal{E}}_{\mathscr {F}}$ denote the fiber $V^{-1} \{ \mathscr {F} \} $, and let $U_{\mathscr {F}}: \operatorname{\mathcal{E}}_{\mathscr {F}} \rightarrow \operatorname{\mathcal{C}}$ be the restriction of $U$. Then $U_{\mathscr {F}}$ is a right fibration with contravariant transport representation $\mathscr {F}$ (Corollary 8.4.2.7). In particular, the right fibration $U_{\mathscr {F}}$ is essentially $\lambda $-small, so the $\infty $-category $\operatorname{\mathcal{E}}_{\mathscr {F}}$ is essentially $\lambda $-small (Proposition 4.7.9.10). It follows that $V$ is a cocartesian fibration (Corollary 5.3.7.3) which admits a covariant transport representation
We will complete the proof by showing that the functor $T$ is $\lambda $-cocontinuous.
Fix a $\lambda $-small $\infty $-category $\operatorname{\mathcal{K}}$ and a (levelwise) colimit diagram $\overline{G}: \operatorname{\mathcal{K}}^{\triangleright } \rightarrow \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{< \lambda } )$; we wish to show that $T \circ \overline{G}$ is a colimit diagram in $\operatorname{\mathcal{QC}}_{< \lambda }$. Set $\operatorname{\mathcal{E}}' = \operatorname{\mathcal{C}}\operatorname{\vec{\times }}_{ \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{< \lambda } ) } \operatorname{\mathcal{K}}^{\triangleright }$, so that $T \circ \overline{G}$ is a covariant transport representation for the projection map $V': \operatorname{\mathcal{E}}' \rightarrow \operatorname{\mathcal{K}}^{\triangleright }$. Let $z$ denote the cone point of $\operatorname{\mathcal{K}}^{\triangleright } = \operatorname{\mathcal{K}}\star \{ z\} $ and define
so that the cocartesian fibration $V'$ admits a covariant refraction diagram $\mathrm{Rf}: \operatorname{\mathcal{E}}'_0 \rightarrow \operatorname{\mathcal{E}}'_{z}$ (see Definition 7.4.5.8). Let $U': \operatorname{\mathcal{E}}' \rightarrow \operatorname{\mathcal{C}}$ be projection onto the first factor and let $W$ be the collection of all morphisms $e$ of $\operatorname{\mathcal{E}}'_0$ such that $U'(e)$ is an identity morphism in $\operatorname{\mathcal{C}}$. It follows from Corollary 5.3.7.3 that a morphism $e$ of $\operatorname{\mathcal{E}}'_0$ is $V'$-cocartesian if and only if $U(e)$ is an isomorphism in $\operatorname{\mathcal{C}}$: that is, if and only if $e$ is isomorphic (as an object of $\operatorname{Fun}( \Delta ^1, \operatorname{\mathcal{E}}'_0 )$) to an element of $W$. By virtue of Theorem 7.4.5.13, it will suffice to show that the functor $\mathrm{Rf}$ exhibits the $\infty $-category $\operatorname{\mathcal{E}}'_{v}$ as a localization of $\operatorname{\mathcal{E}}'_0$ with respect to $W$.
Let $h: \Delta ^1 \times \operatorname{\mathcal{E}}'_0 \rightarrow \operatorname{\mathcal{E}}'$ be a natural transformation which exhibits $\mathrm{Rf}$ as a covariant refraction diagram for $V'$ (see Definition 7.4.5.8). Then $h$ carries each object $E \in \operatorname{\mathcal{E}}'_0$ to a $V'$-cocartesian morphism $h_{E}: E \rightarrow \mathrm{Rf}(E)$, so that $U'( h_{E} )$ is an isomorphism in $\operatorname{\mathcal{C}}$. We may therefore assume (replacing $\mathrm{Rf}$ by an isomorphic functor if necessary) that the composition $(U' \circ h): \Delta ^1 \times \operatorname{\mathcal{E}}'_0 \rightarrow \operatorname{\mathcal{C}}$ factors through $\operatorname{\mathcal{E}}'_0$ (so that each $U'(h_{E})$ is an identity morphism in $\operatorname{\mathcal{C}}$). Then, for each $C \in \operatorname{\mathcal{C}}$, $\mathrm{Rf}$ restricts to a functor
which is a covariant refraction diagram for the left fibration $\{ C\} \operatorname{\vec{\times }}_{\operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{< \lambda } )} \operatorname{\mathcal{K}}^{\triangleright } \rightarrow \operatorname{\mathcal{K}}^{\triangleright }$. Our assumption that $\overline{G}$ is a (levelwise) colimit diagram then guarantees that $\mathrm{Rf}_{C}$ is a weak homotopy equivalence: that is, it exhibits the Kan complex $\{ C\} \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}'_{z}$ as a localization of $\{ C\} \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}'_0$ with respect to the collection $W_{C}$ of all morphisms of $\{ C\} \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}'_0$ (Theorem 7.4.5.13). Applying Theorem 6.3.4.1, we conclude that $\mathrm{Rf}$ exhibits $\operatorname{\mathcal{E}}'_{v}$ as a localization of $\operatorname{\mathcal{E}}'_0$ with respect to the collection of morphisms $W = \bigcup _{C \in \operatorname{\mathcal{C}}} W_{C}$, as desired. $\square$
Lemma 9.2.4.16. Let $\kappa $ and $\lambda $ be regular cardinals, where $\lambda $ is uncountable. Then, for every $\infty $-category $\operatorname{\mathcal{C}}$, the full subcategory $\operatorname{Fun}^{\kappa -\flat }( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{< \lambda } ) \subseteq \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{< \lambda } )$ is closed under $\lambda $-small $\kappa $-filtered colimits.
Proof. Enlarging $\lambda $ if necessary, we may assume that $\operatorname{\mathcal{C}}$ is essentially $\lambda $-small. Let $T: \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{< \lambda }) \rightarrow \operatorname{\mathcal{QC}}_{< \lambda }$ be as in Lemma 9.2.4.15. Then a functor $\mathscr {F}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{S}}_{< \lambda }$ belongs to $\operatorname{Fun}^{\kappa -\flat }( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{< \lambda } )$ if and only if the $\infty $-category $T( \mathscr {F} )$ is $\kappa $-filtered (Remark 9.2.4.13). Since $T$ is $\lambda $-cocontinuous, the collection of objects which satisfy this condition is closed under $\lambda $-small, $\kappa $-filtered colimits (Corollary 9.1.5.13). $\square$
Lemma 9.2.4.17. Let $\kappa \leq \lambda $ be regular cardinals, where $\lambda $ is uncountable. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category which is essentially $\lambda $-small and let $h_{\bullet }: \operatorname{\mathcal{C}}\rightarrow \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{< \lambda } )$ be a covariant Yoneda embedding for $\operatorname{\mathcal{C}}$. Then a functor $\mathscr {F}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{S}}_{< \lambda }$ is $\lambda $-flat if and only if there exists a $\lambda $-small, $\kappa $-filtered diagram $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ such that $\mathscr {F}$ is the colimit of $(h_{\bullet } \circ U): \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{S}}_{< \lambda }$.
Proof. The “if” direction follows by combining Lemma 9.2.4.16 with Example 9.2.4.11. For the converse, assume that $\mathscr {F}$ is $\kappa $-flat. Then the $\infty $-category
is $\kappa $-filtered (Remark 9.2.4.13). Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be the projection map. Since the covariant Yoneda embedding $h_{\bullet }$ is dense (Variant 8.4.2.4), $\mathscr {F}$ is a colimit of the diagram $(h_{\bullet } \circ U)$. To complete the proof, it will suffice to show that the $\infty $-category $\operatorname{\mathcal{E}}$ is essentially $\lambda $-small. This follows from Corollary 4.7.9.12, since $\operatorname{\mathcal{C}}$ is essentially $\lambda $-small and the right fibration $U$ is essentially $\lambda $-small. $\square$
Remark 9.2.4.18. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $\mathscr {F}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{S}}_{< \lambda }$ be a flat functor. Assume that $\operatorname{\mathcal{D}}$ is locally $n$-truncated for some integer $n$. Then, for every object $C \in \operatorname{\mathcal{C}}$, the Kan complex $\mathscr {F}(C)$ is $n$-truncated. To prove this, we can apply Lemma 9.2.4.17 (possibly after enlarging $\lambda $) to realize $\mathscr {F}$ as a levelwise filtered colimit of representable functors. Since the collection of $n$-truncated Kan complexes is closed under filtered colimits (Variant 9.1.10.3), we may assume without loss of generality that $\mathscr {F}$ is representable by an object $D \in \operatorname{\mathcal{C}}$. In this case, we are reduced to the assertion that the every morphism space $\operatorname{Hom}_{\operatorname{\mathcal{C}}}( C,D )$ is $n$-truncated, which follows from our assumption on $\operatorname{\mathcal{C}}$. See Proposition 9.2.3.13 for a closely related statement.
Corollary 9.2.4.19. Let $\kappa $ be a regular cardinal and let $\mathscr {F}: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{S}}_{< \lambda }$ be a $\kappa $-flat functor, where $\lambda $ is an uncountable cardinal. Then $\mathscr {F}$ preserves all $\kappa $-small limits which exist in $\operatorname{\mathcal{D}}$.
Proof. Enlarging $\lambda $ if necessary, we may assume that $\lambda $ is regular, that $\operatorname{\mathcal{D}}$ is essentially $\lambda $-small, and that $\lambda $ has exponential cofinality $\geq \kappa $ (so that the $\infty $-category $\operatorname{\mathcal{S}}_{< \lambda }$ admits $\kappa $-small limits). Using Lemma 9.2.4.17, we can realize $\mathscr {F}$ as the colimit of a $\lambda $-small $\kappa $-filtered diagram
where each $\mathscr {F}_{\alpha }$ is corepresentable by an object of $\operatorname{\mathcal{D}}$ and therefore preserves all limits which exist in $\operatorname{\mathcal{D}}$ (Proposition 7.4.1.18). Since $\operatorname{\mathcal{K}}$-indexed colimits commute with $\kappa $-small limits in the $\infty $-category $\operatorname{\mathcal{S}}_{< \lambda }$ (Proposition 9.1.5.8), it follows that the functor $\mathscr {F}$ preserves $\kappa $-small limits. $\square$
Remark 9.2.4.20. If the $\infty $-category $\operatorname{\mathcal{D}}$ admits $\kappa $-small limits, then the converse of Corollary 9.2.5.23 is also true: a functor $\mathscr {F}: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{S}}_{< \lambda }$ which preserves $\kappa $-small limits is $\kappa $-flat. See Corollary 9.2.5.23.
Proof of Theorem 9.2.4.14. Let $\kappa \leq \lambda $ be regular cardinals, where $\lambda $ is uncountable, let $\operatorname{\mathcal{C}}$ be an $\infty $-category which is essentially $\lambda $-small. We wish to show that the covariant Yoneda embedding $h_{\bullet }: \operatorname{\mathcal{C}}\rightarrow \operatorname{Fun}^{\kappa -\flat }( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{< \lambda })$ exhibits $\operatorname{Fun}^{\kappa -\flat }( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{< \lambda })$ as an $\operatorname{Ind}_{\kappa }^{\lambda }$-completion of $\operatorname{\mathcal{C}}$. By virtue of Proposition 8.4.5.8, it will suffice to show that $\operatorname{Fun}^{\kappa -\flat }( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{< \lambda })$ is the smallest full subcategory of $\operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{< \lambda } )$ which contains all representable functors and is closed under $\lambda $-small $\kappa $-filtered colimits. This follows from Example 9.2.4.11, Lemma 9.2.4.16, and Lemma 9.2.4.17. $\square$
Corollary 9.2.4.21. Let $\kappa \leq \lambda $ be regular cardinals and let $\operatorname{\mathcal{C}}$ be an $\infty $-category. Then every object of $\operatorname{Ind}^{\lambda }_{\kappa }(\operatorname{\mathcal{C}})$ can be realized as the colimit of a $\lambda $-small, $\kappa $-filtered diagram $\operatorname{\mathcal{K}}\rightarrow \operatorname{\mathcal{C}}$.
Proof. Without loss of generality, we may assume that $\lambda $ is uncountable (see Example 9.2.1.10). Fix a regular cardinal $\mu > \lambda $ having exponential cofinality $\geq \lambda $ such that $\operatorname{\mathcal{C}}$ is $\mu $-small. Then $\lambda \triangleleft \mu $ (Proposition 9.1.7.8), so $\operatorname{\mathcal{C}}$ can be realized as the colimit of a $\mu $-small, $\lambda $-filtered diagram $\{ \operatorname{\mathcal{C}}_{\alpha } \} $ in the $\infty $-category $\operatorname{\mathcal{QC}}_{< \mu }$ (see Variant 9.1.7.21), where each $\operatorname{\mathcal{C}}_{\alpha }$ is $\lambda $-small. It follows from Proposition 9.2.1.23 that every object of $\operatorname{Ind}_{\kappa }^{\lambda }( \operatorname{\mathcal{C}})$ can be lifted to an object of $\operatorname{Ind}_{\kappa }^{\lambda }( \operatorname{\mathcal{C}}_{\alpha } )$, for some index $\alpha $. We may therefore replace $\operatorname{\mathcal{C}}$ by $\operatorname{\mathcal{C}}_{\alpha }$, and thereby reduce to the case where $\operatorname{\mathcal{C}}$ is $\lambda $-small. In this case, we can use Theorem 9.2.4.14 to identify $\operatorname{Ind}_{\kappa }^{\lambda }( \operatorname{\mathcal{C}})$ with the $\infty $-category $\operatorname{Fun}^{\kappa -\flat }( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{< \lambda } )$, and the desired result follows from Lemma 9.2.4.17. $\square$
Proposition 9.2.4.22. Let $\kappa \leq \lambda $ be regular cardinals, where $\lambda $ is uncountable, and let $\operatorname{\mathcal{C}}$ be an $\infty $-category which is locally $\lambda $-small. Let $\widehat{\operatorname{\mathcal{C}}} \subseteq \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{< \lambda } )$ be the full subcategory spanned by those functors $\mathscr {F}$ which satisfy the following condition:
There exists a full subcategory $\operatorname{\mathcal{C}}_0 \subseteq \operatorname{\mathcal{C}}$ such that $\mathscr {F}|_{ \operatorname{\mathcal{C}}^{\operatorname{op}}_0 }$ is $\kappa $-flat, $\mathscr {F}$ is left Kan extended from $\operatorname{\mathcal{C}}^{\operatorname{op}}_{0}$, and $\operatorname{\mathcal{C}}_0$ is essentially $\lambda $-small.
Then the covariant Yoneda embedding
exhibits $\widehat{\operatorname{\mathcal{C}}}$ as an $\operatorname{Ind}_{\kappa }^{\lambda }$-completion of $\operatorname{\mathcal{C}}$.
Proof. Using Proposition 8.4.5.8, we can identify $\operatorname{Ind}_{\kappa }^{\lambda }(\operatorname{\mathcal{C}})$ with the smallest full subcategory of $\operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{< \lambda } )$ which contains all representable functors and is closed under $\lambda $-small $\kappa $-filtered colimits. For every full subcategory $\operatorname{\mathcal{C}}_0$ of $\operatorname{\mathcal{C}}$, the inclusion functor $\iota : \operatorname{\mathcal{C}}_0 \hookrightarrow \operatorname{\mathcal{C}}$ induces a functor
which is given (under the preceding identification) by left Kan extension along $\iota $ (Remark 9.2.1.21). Using Theorem 9.2.4.14, we see that a functor $\mathscr {F}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{S}}_{< \lambda }$ is contained in $\widehat{\operatorname{\mathcal{C}}}$ if and only if it belongs to the essential image of $\operatorname{Ind}_{\kappa }^{\lambda }(\iota )$ for some full subcategory $\operatorname{\mathcal{C}}_0 \subseteq \operatorname{\mathcal{C}}$ which is essentially $\lambda $-small. This follows from Proposition 9.2.1.23, since the collection of such subcategories comprise a $\lambda $-filtered diagram having colimit $\operatorname{\mathcal{C}}$. $\square$
Under some additional set-theoretic assumptions, condition $(\ast )$ of Proposition 9.2.4.22 can be simplified.
Corollary 9.2.4.23. Let $\kappa \triangleleft \lambda $ be regular cardinals, where $\lambda $ is uncountable, and let $\operatorname{\mathcal{C}}$ be an $\infty $-category which is locally $\lambda $-small. Let $\widehat{\operatorname{\mathcal{C}}} \subseteq \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{< \lambda } )$ be the full subcategory spanned by those $\kappa $-flat functors $\mathscr {F}$ satisfying the following condition:
The functor $\mathscr {F}$ is left Kan extended from $\operatorname{\mathcal{C}}_0^{\operatorname{op}}$, for some essentially small full subcategory $\operatorname{\mathcal{C}}_0 \subseteq \operatorname{\mathcal{C}}$.
Then the covariant Yoneda embedding
exhibits $\widehat{\operatorname{\mathcal{C}}}$ as an $\operatorname{Ind}_{\kappa }^{\lambda }$-completion of $\operatorname{\mathcal{C}}$.
Proof. As in the proof of Proposition 9.2.4.22, we can identify $\operatorname{Ind}_{\kappa }^{\lambda }(\operatorname{\mathcal{C}})$ with the smallest full subcategory of $\operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{< \lambda } )$ which contains all representable functors and is closed under $\lambda $-small $\kappa $-filtered colimits. It follows from Lemma 9.2.4.16 (and Example 9.2.4.11), we see that every functor $\mathscr {F}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{S}}_{< \lambda }$ which belongs to $\operatorname{Ind}_{\kappa }^{\lambda }(\operatorname{\mathcal{C}})$ is $\kappa $-flat. To complete the proof, it will suffice to show that every $\kappa $-flat functor $\mathscr {F}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{S}}_{< \lambda }$ satisfying condition $(\ast ')$ also satisfies condition $(\ast )$ of Proposition 9.2.4.22.
Using Proposition 8.6.8.3, we may assume that $\mathscr {F}$ is the contravariant transport representation of an essentially $\lambda $-small right fibration of $\infty $-categories $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$. Replacing $U$ by a minimal fibration if necessary (Proposition 5.3.8.11). Similarly, we may assume that the $\infty $-category $\operatorname{\mathcal{C}}$ is minimal (Proposition 4.7.6.15). By assumption, the functor $\mathscr {F}$ is left Kan extended from a full subcategory $\operatorname{\mathcal{C}}_0 \subseteq \operatorname{\mathcal{C}}$ which is essentially $\lambda $-small. Since $\operatorname{\mathcal{C}}_0$ is also minimal, it is $\lambda $-small. We extend $\operatorname{\mathcal{C}}_0$ to a transfinite sequence of $\lambda $-small full subcategories $\{ \operatorname{\mathcal{C}}_{\alpha } \subseteq \operatorname{\mathcal{C}}\} _{0 \leq \beta \leq \kappa }$ as follows:
Suppose that $\beta = \alpha +1$ is a successor ordinal, and that the full subcategory $\operatorname{\mathcal{C}}_{\alpha }$ has been defined. Let $\operatorname{\mathcal{E}}_{\alpha } \subseteq \operatorname{\mathcal{E}}$ be the inverse image of $\operatorname{\mathcal{C}}_{\alpha }$. Since $\operatorname{\mathcal{C}}_{\alpha }$ is $\lambda $-small and $U$ is an essentially $\lambda $-small minimal fibration, the $\infty $-category $\operatorname{\mathcal{E}}_{\alpha }$ is also $\lambda $-small. Our assumption that $\mathscr {F}$ is $\kappa $-flat guarantees that the $\infty $-category $\operatorname{\mathcal{E}}$ is $\kappa $-filtered. Since $\kappa \triangleleft \lambda $, Proposition 9.1.7.14 guarantees that $\operatorname{\mathcal{E}}_{\alpha }$ is contained in a $\lambda $-small simplicial subset $\operatorname{\mathcal{E}}^{+}_{\alpha } \subseteq \operatorname{\mathcal{E}}$ which is also a $\kappa $-filtered $\infty $-category. We define $\operatorname{\mathcal{C}}_{\beta }$ to be the full subcategory of $\operatorname{\mathcal{C}}$ spanned by the objects $U(X)$, where $X$ belongs to $\operatorname{\mathcal{E}}^{+}_{\alpha }$.
If $\beta $ is a nonzero limit ordinal, we define $\operatorname{\mathcal{C}}_{\beta }$ to be the union $\bigcup _{\alpha < \beta } \operatorname{\mathcal{C}}_{\alpha }$.
We now claim that the full subcategory $\operatorname{\mathcal{C}}_{\kappa } \subseteq \operatorname{\mathcal{C}}$ satisfies condition $(\ast )$ of Proposition 9.2.4.22. By construction, it is a $\lambda $-small subcategory of $\operatorname{\mathcal{C}}$ which contains $\operatorname{\mathcal{C}}_0$, so that $\mathscr {F}$ is left Kan extended from $\operatorname{\mathcal{C}}_{\kappa }^{\operatorname{op}}$ (Proposition 7.3.8.6). It will therefore suffice to show that the functor $\mathscr {F}|_{ \operatorname{\mathcal{C}}_{\kappa }^{\operatorname{op}} }$ is $\kappa $-flat: that is, that the $\infty $-category $\operatorname{\mathcal{E}}_{\kappa } = \operatorname{\mathcal{C}}_{\kappa } \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}$ is $\kappa $-filtered. This is a special case of Corollary 9.1.5.13, since $\operatorname{\mathcal{E}}_{\kappa }$ can be realized as the colimit of the $\kappa $-filtered diagram $\{ \operatorname{\mathcal{E}}_{\alpha }^{+} \} _{\alpha < \kappa }$ comprised of $\kappa $-filtered $\infty $-categories. $\square$
Corollary 9.2.4.24. Let $\kappa $ be a small regular cardinal, let $\operatorname{\mathcal{C}}$ be a locally small $\infty $-category, and let $\widehat{\operatorname{\mathcal{C}}} \subseteq \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}})$ be the full subcategory spanned by the $\kappa $-flat functors $\mathscr {F}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{S}}$ which are left Kan extended from an essentially small full subcategory of $\operatorname{\mathcal{C}}$. Then the covariant Yoneda embedding exhibits $\widehat{\operatorname{\mathcal{C}}}$ as an $\operatorname{Ind}_{\kappa }$-completion of $\operatorname{\mathcal{C}}$.
Proof. Apply Corollary 9.2.4.23 in the special case where $\lambda = \operatorname{\textnormal{\cjRL {t}}}$ is a strongly inaccessible cardinal. $\square$
Corollary 9.2.4.25. Let $\operatorname{\mathcal{C}}$ be a locally small $\infty $-category, and let $\widehat{\operatorname{\mathcal{C}}} \subseteq \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}})$ be the full subcategory spanned by the flat functors $\mathscr {F}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{S}}$ which are left Kan extended from an essentially small full subcategory of $\operatorname{\mathcal{C}}$. Then the covariant Yoneda embedding exhibits $\widehat{\operatorname{\mathcal{C}}}$ as an $\operatorname{Ind}$-completion of $\operatorname{\mathcal{C}}$.
Proof. Apply Corollary 9.2.4.24 in the special case $\kappa = \aleph _0$. $\square$