Example 9.2.4.11 (Corepresentable Functors). Let $\lambda $ be an uncountable cardinal and let $\operatorname{\mathcal{D}}$ be an $\infty $-category. If $\mathscr {F}: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{S}}_{< \lambda }$ is corepresentable by an object of $\operatorname{\mathcal{D}}$, then it is $\kappa $-flat for every regular cardinal $\kappa $: this follows from Example 9.1.1.6, since the $\infty $-category $\int _{\operatorname{\mathcal{D}}} \mathscr {F}$ has an initial object (Proposition 5.6.6.21).
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$