Proposition 5.6.6.21. Let $U: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{C}}$ be an essentially small left fibration of $\infty $-categories and let $X \in \operatorname{\mathcal{C}}$ be an object. Then:
- $(1)$
Let $\widetilde{X} \in \operatorname{\mathcal{D}}$ be an object satisfying $U( \widetilde{X} ) = X$. Then $\widetilde{X}$ is an initial object of $\operatorname{\mathcal{D}}$ if and only if, for every object $Y \in \operatorname{\mathcal{C}}$, the composition
\[ \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y) \xrightarrow {\theta } \operatorname{Fun}( \operatorname{\mathcal{D}}_{X}, \operatorname{\mathcal{D}}_{Y} ) \xrightarrow { \operatorname{ev}_{\widetilde{X}} } \operatorname{\mathcal{D}}_{Y} \]is a homotopy equivalence, where $\theta $ is given by parametrized covariant transport (see Definition 5.2.8.1).
- $(2)$
Let $\operatorname{hTr}_{\operatorname{\mathcal{D}}/\operatorname{\mathcal{C}}}: \mathrm{h} \mathit{\operatorname{\mathcal{C}}} \rightarrow \mathrm{h} \mathit{\operatorname{Kan}}$ be the homotopy transport representation of $U$, which we regard as an $\mathrm{h} \mathit{\operatorname{Kan}}$-enriched functor (Variant 5.2.8.12). Then $\widetilde{X}$ is an initial object of $\operatorname{\mathcal{D}}$ if and only if it exhibits $\operatorname{hTr}_{\operatorname{\mathcal{D}}/\operatorname{\mathcal{C}}}$ as corepresented by $X$, in the sense of Definition 5.6.6.10.
- $(3)$
The homotopy transport representation $\operatorname{hTr}_{\operatorname{\mathcal{D}}/\operatorname{\mathcal{C}}}$ is corepresentable by the object $X$ if and only if there exists an initial object $\widetilde{X} \in \operatorname{\mathcal{D}}$ satisfying $U( \widetilde{X} ) = X$.
- $(4)$
Let $\operatorname{Tr}_{\operatorname{\mathcal{D}}/\operatorname{\mathcal{C}}}: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{S}}$ be a covariant transport representation for $U$. Then $\operatorname{Tr}_{\operatorname{\mathcal{D}}/\operatorname{\mathcal{C}}}$ is corepresentable by the object $X$ if and only if there exists an initial object $\widetilde{X} \in \operatorname{\mathcal{D}}$ satisfying $U( \widetilde{X} ) = X$.