Proposition 4.6.7.22. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $f: X \rightarrow Y$ be a morphism in $\operatorname{\mathcal{C}}$. The following conditions are equivalent:
- $(1)$
The morphism $f$ is an isomorphism from $X$ to $Y$ in the $\infty $-category $\operatorname{\mathcal{C}}$ (Definition 1.4.6.1).
- $(2)$
The morphism $f$ is final when regarded as an object of the slice $\infty $-category $\operatorname{\mathcal{C}}_{/Y}$.
- $(2')$
The morphism $f$ is final when regarded as an object of the oriented fiber product $\operatorname{\mathcal{C}}\operatorname{\vec{\times }}_{\operatorname{\mathcal{C}}} \{ Y\} $.
- $(3)$
The morphism $f$ is initial when regarded as an object of the coslice $\infty $-category $\operatorname{\mathcal{C}}_{X/}$.
- $(3')$
The morphism $f$ is initial when regarded as an object of the oriented fiber product $\{ X\} \operatorname{\vec{\times }}_{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}$.