Proposition 5.6.6.19. Let $U: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{C}}$ be a left fibration of $\infty $-categories and let $\widetilde{X} \in \operatorname{\mathcal{D}}$ be an object having image $X = U( \widetilde{X} )$. The following conditions are equivalent:
- $(1)$
There exists an equivalence $F: \operatorname{\mathcal{C}}_{X/} \rightarrow \operatorname{\mathcal{D}}$ of left fibrations over $\operatorname{\mathcal{C}}$ satisfying $F( \operatorname{id}_ X) = \widetilde{X}$.
- $(2)$
The object $\widetilde{X} \in \operatorname{\mathcal{D}}$ is initial (Definition 4.6.7.1).
- $(3)$
For every left fibration $V: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$, evaluation on the object $\widetilde{X}$ induces a trivial Kan fibration $\operatorname{Fun}_{ / \operatorname{\mathcal{C}}}( \operatorname{\mathcal{D}}, \operatorname{\mathcal{E}}) \rightarrow \{ X\} \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}$.
- $(4)$
For every left fibration $V: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$, evaluation on the object $\widetilde{X}$ induces a bijection
\[ \pi _0( \operatorname{Fun}_{ / \operatorname{\mathcal{C}}}( \operatorname{\mathcal{D}}, \operatorname{\mathcal{E}}) ) \rightarrow \pi _0( \{ X\} \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}). \]