Corollary 8.4.5.11. Let $\mathbb {K}$ be a collection of simplicial sets, let $h: \operatorname{\mathcal{C}}\rightarrow \widehat{\operatorname{\mathcal{C}}}$ be a functor of $\infty $-categories which exhibits $\widehat{\operatorname{\mathcal{C}}}$ as a $\mathbb {K}$-cocompletion of $\operatorname{\mathcal{C}}$. Let $f: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty $-categories, where $\operatorname{\mathcal{D}}$ is $\mathbb {K}$-cocomplete. Suppose we are given a functor $F: \widehat{\operatorname{\mathcal{C}}} \rightarrow \operatorname{\mathcal{D}}$ and a natural transformation $\alpha : f \rightarrow F \circ h$, as indicated in the diagram
The following conditions are equivalent:
- $(1)$
The natural transformation $\alpha $ exists $F$ as a $\mathbb {K}$-cocontinuous extension of $f$ (see Remark 8.4.5.5). That is, $F$ is $\mathbb {K}$-cocontinuous and $\alpha $ is an isomorphism.
- $(2)$
The natural transformation $\alpha $ exhibits $F$ as a left Kan extension of $f$ along $h$.