Lemma 9.1.3.1. Let $\kappa $ be an infinite cardinal, let $K$ be a $\kappa $-small simplicial set and let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a cocartesian fibration. If $\operatorname{\mathcal{C}}$ is $\kappa $-filtered, then every diagram $f: K \rightarrow \operatorname{\mathcal{E}}$ admits a natural transformation $\beta : f \rightarrow f'$ where $U \circ f'$ is constant: that is, $f'$ is a diagram in the $\infty $-category $\operatorname{\mathcal{E}}_{C} = \{ C\} \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}$, for some object $C \in \operatorname{\mathcal{C}}$.
9.1.3 Fibrations over Filtered $\infty $-Categories
Let $\operatorname{\mathcal{C}}$ be a filtered $\infty $-category and suppose we are given a diagram $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{S}}$ in the $\infty $-category of spaces. Our first goal in this section is to show that the colimit $\varinjlim (\mathscr {F} )$ is contractible if and only if the $\infty $-category of elements $\int _{\operatorname{\mathcal{C}}} \mathscr {F}$ is filtered (Corollary 9.1.3.4). Our proof relies on the following elementary observation:
Proof. Since $\operatorname{\mathcal{C}}$ is $\kappa $-filtered, we can choose an object $C \in \operatorname{\mathcal{C}}$ and a morphism $\overline{\beta }: (U \circ e) \rightarrow \underline{C}$ in the $\infty $-category $\operatorname{Fun}(K, \operatorname{\mathcal{C}})$. Using Theorem 5.2.1.1, we can lift $\overline{\beta }$ to a ($U$-cocartesian) natural transformation $\beta : e \rightarrow e'$, where $e'$ is a diagram in the $\infty $-category $\operatorname{\mathcal{E}}_{C}$. $\square$
Theorem 9.1.3.2. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a left fibration of $\infty $-categories where the $\infty $-category $\operatorname{\mathcal{C}}$ is filtered. Then $\operatorname{\mathcal{E}}$ is filtered if and only if it is weakly contractible.
Proof. Assume that $\operatorname{\mathcal{E}}$ is weakly contractible; we will show that $\operatorname{\mathcal{E}}$ is filtered (the converse follows from Proposition 9.1.1.13). Suppose that we are given a diagram $e: K \rightarrow \operatorname{\mathcal{E}}$, where $K$ is a finite simplicial set. We wish to show that there exists a natural transformation from $e$ to a constant diagram. Choose a monomorphism $K \hookrightarrow L$, where $L$ is another finite simplicial set which is weakly contractible (for example, we can take $L = K^{\triangleright }$). Let $\operatorname{Ex}^{\infty }( \operatorname{\mathcal{E}})$ be the simplicial set given by Construction 3.3.6.1, so that $\operatorname{Ex}^{\infty }( \operatorname{\mathcal{E}})$ is a Kan complex (Proposition 3.3.6.9). Let $\rho ^{\infty }: \operatorname{\mathcal{E}}\rightarrow \operatorname{Ex}^{\infty }( \operatorname{\mathcal{E}})$ be the weak homotopy equivalence of Proposition 3.3.6.7. Since $\operatorname{\mathcal{E}}$ is weakly contractible, the Kan complex $\operatorname{Ex}^{\infty }(\operatorname{\mathcal{E}})$ is contractible. It follows that the composite map $K \xrightarrow {e} \operatorname{\mathcal{E}}\xrightarrow { \rho ^{\infty } } \operatorname{Ex}^{\infty }( \operatorname{\mathcal{E}})$ can be extended to a map $e^{+}: L \rightarrow \operatorname{Ex}^{\infty }( \operatorname{\mathcal{E}})$. Since the simplicial set $L$ is finite, the morphism $\overline{e}$ factors through $\operatorname{Ex}^{m}( \operatorname{\mathcal{E}})$ for some $m \gg 0$ (see Proposition 3.6.1.9), and therefore corresponds to a diagram $f: \operatorname{Sd}^{m}(L) \rightarrow \operatorname{\mathcal{E}}$ such that $f|_{ \operatorname{Sd}^{m}(K) }$ is given by the composition $\operatorname{Sd}^{m}(K) \twoheadrightarrow K \xrightarrow {e} \operatorname{\mathcal{E}}$. Note that the quotient map $\operatorname{Sd}^{m}(K) \twoheadrightarrow K$ is universally localizing (Proposition 6.3.7.2) and therefore right cofinal (Corollary 7.2.1.11). We may therefore replace $K$ by $\operatorname{Sd}^{m}(K)$ and $L$ by $\operatorname{Sd}^{m}(L)$, and thereby reduce to the case where $m = 0$: that is, the diagram $e$ admits an extension $f: L \rightarrow \operatorname{\mathcal{E}}$. Using Lemma 9.1.3.1, we can choose a natural transformation $\beta : f \rightarrow f'$, where $f': L \rightarrow \operatorname{\mathcal{E}}$ factors through the Kan complex $\operatorname{\mathcal{E}}_{C} = \{ C\} \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}$ for some object $C \in \operatorname{\mathcal{C}}$. Since $L$ is weakly contractible, the morphism $f'$ is nullhomotopic (when regarded as a diagram in the Kan complex $\operatorname{\mathcal{E}}_{C}$). We may therefore assume without loss of generality that $f' = \underline{X}$ is the constant diagram associated to some object $X \in \operatorname{\mathcal{E}}_{C}$. Restricting to the simplicial subset $K \subseteq L$, we obtain a natural transformation from $e = f|_{K}$ to the constant diagram $f'|_{K}$. $\square$
Corollary 9.1.3.3. Let $\kappa $ be an uncountable regular cardinal, let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a left fibration between essentially $\kappa $-small $\infty $-categories, and let $\operatorname{Tr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{S}}^{< \kappa }$ be a covariant transport representation for $U$ (Definition 5.6.5.1). Suppose that $\operatorname{\mathcal{C}}$ is filtered. Then $\operatorname{\mathcal{E}}$ is filtered if and only if the colimit $\varinjlim ( \operatorname{Tr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}} ) \in \operatorname{\mathcal{S}}^{< \kappa }$ is contractible.
Proof. By virtue of Proposition 7.4.3.1, the colimit $\varinjlim ( \operatorname{Tr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}} )$ is contractible if and only if the $\infty $-category $\operatorname{\mathcal{E}}$ is weakly contractible. The desired result is therefore a reformulation of Theorem 9.1.3.2. $\square$
Corollary 9.1.3.4. Let $\operatorname{\mathcal{C}}$ be a small filtered $\infty $-category and let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{S}}$ be a $\operatorname{\mathcal{C}}$-indexed diagram of spaces. Then the colimit $\varinjlim (\mathscr {F}) \in \operatorname{\mathcal{S}}$ is contractible if and only if the $\infty $-category of elements $\int _{\operatorname{\mathcal{C}}} \mathscr {F}$ is filtered.
Theorem 9.1.3.2 has a counterpart for $\kappa $-filtered $\infty $-categories. For this, we will need the following general observation:
Lemma 9.1.3.5. Let $\kappa $ be an uncountable cardinal and let $e: K \rightarrow X$ be a morphism of simplicial sets, where $K$ is $\kappa $-small and $X$ is weakly contractible. Then $e$ factors through a simplicial subset $Y \subseteq X$, where $Y$ is $\kappa $-small and weakly contractible.
Proof. Without loss of generality, we may assume that $\kappa $ is regular (and therefore of cofinality $> \aleph _0$). Let $Y_0 \subseteq X$ be the image of $e$. We will construct $Y$ as the union of an increasing sequence of $\kappa $-small simplicial subsets
Assume that $Y_ n$ has been defined for some $n \geq 0$. Since $X$ is weakly contractible, the Kan complex $\operatorname{Ex}^{\infty }(X)$ is contractible. It follows that the inclusion $\operatorname{Ex}^{\infty }(Y_ n) \hookrightarrow \operatorname{Ex}^{\infty }(X)$ is nullhomotopic: that is, it admits an extension $f_ n: \operatorname{Ex}^{\infty }(Y_ n)^{\triangleright } \rightarrow \operatorname{Ex}^{\infty }(X)$. Since $\operatorname{Ex}^{\infty }(Y_ n)^{\triangleright }$ is $\kappa $-small (Corollary 4.7.4.16), we can choose a $\kappa $-small simplicial $Y_{n+1} \subseteq X$ containing $Y_{n}$ such that $f_ n$ factors through $\operatorname{Ex}^{\infty }( Y_{n+1} )$. To complete the proof, it will suffice to show that the union $Y = \bigcup _{n} Y_{n}$ is weakly contractible, or equivalently that the Kan complex $\operatorname{Ex}^{\infty }(Y)$ is contractible. This follows from Corollary 3.2.4.15, since $\operatorname{Ex}^{\infty }(Y)$ is the colimit of a diagram of nullhomotopic maps
Variant 9.1.3.6. Let $\kappa $ be an infinite cardinal and let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a left fibration of $\infty $-categories, where $\operatorname{\mathcal{C}}$ is $\kappa $-filtered. Then $\operatorname{\mathcal{E}}$ is $\kappa $-filtered if and only if it is weakly contractible.
Remark 9.1.3.7. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a left fibration of $\infty $-categories, where $\operatorname{\mathcal{C}}$ is $\kappa $-filtered. Then $\operatorname{\mathcal{E}}$ is $\kappa $-filtered if and only if it is filtered: by virtue of Variant 9.1.3.6 and Theorem 9.1.3.2, both conditions are equivalent to the requirement that $\operatorname{\mathcal{E}}$ is weakly contractible.
Proof of Variant 9.1.3.6. Assume that $\operatorname{\mathcal{E}}$ is weakly contractible; we will show that it is $\kappa $-filtered (the converse follows from Proposition 9.1.1.13). If $\kappa = \aleph _0$, this follows from Theorem 9.1.3.2. We may therefore assume without loss of generality that $\kappa $ is uncountable. Fix a diagram $e: K \rightarrow \operatorname{\mathcal{E}}$, where $K$ is a $\kappa $-small simplicial set; we wish to show that there exists a natural transformation from $e$ to a constant diagram. Using Lemma 9.1.3.5, we can reduce to the case where $K$ is weakly contractible. Using Lemma 9.1.3.1, we can reduce further to the situation where $e$ factors through the Kan complex $\operatorname{\mathcal{E}}_{C} = \{ C\} \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}$ for some object $C \in \operatorname{\mathcal{C}}$. In this case, our assumption that $K$ is weakly contractible guarantees that $e$ is nullhomotopic (when regarded as a diagram $\operatorname{\mathcal{E}}_{C}$), and therefore isomorphic to a constant diagram (when regarded as a diagram in $\operatorname{\mathcal{E}}$). $\square$
We now record another consequence of Lemma 9.1.3.1, which will be useful in ยง9.1.5.
Proposition 9.1.3.8. Let $\kappa $ be an infinite cardinal, let $\operatorname{\mathcal{C}}$ be a $\kappa $-filtered $\infty $-category, and let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a cocartesian fibration of $\infty $-categories. The following conditions are equivalent:
The $\infty $-category $\operatorname{\mathcal{E}}$ is $\kappa $-filtered.
For every object $C \in \operatorname{\mathcal{C}}$ and every diagram $e: K \rightarrow \operatorname{\mathcal{E}}_{C}$, where $K$ is $\kappa $-small, there exists an object $Y \in \operatorname{\mathcal{E}}$ and a natural transformation from $e$ to the constant diagram $\underline{Y}$ (in the $\infty $-category $\operatorname{Fun}(K, \operatorname{\mathcal{E}})$).
For every object $C \in \operatorname{\mathcal{C}}$ and every diagram $e: K \rightarrow \operatorname{\mathcal{E}}_{C}$, where $K$ is $\kappa $-small, there exists a morphism $f: C \rightarrow D$ of $\operatorname{\mathcal{C}}$ satisfying the following condition:
There is an object $Y \in \operatorname{\mathcal{E}}_{D}$ and a natural transformation $\alpha : e \rightarrow \underline{Y}$ (in the $\infty $-category $\operatorname{Fun}(K, \operatorname{\mathcal{E}})$) such that $U(\alpha )$ is the constant natural transformation $\underline{f}: \underline{C} \rightarrow \underline{D}$ (in the $\infty $-category $\operatorname{Fun}(K, \operatorname{\mathcal{C}})$).
Remark 9.1.3.9. In condition $(3)$ of Proposition 9.1.3.8, let $f_{!}: \operatorname{\mathcal{E}}_{C} \rightarrow \operatorname{\mathcal{E}}_{D}$ be the functor given by covariant transport along $f$. Then condition $(\ast )$ is equivalent to either of the following:
There exists an object $Y \in \operatorname{\mathcal{E}}_{D}$ and a natural transformation $\beta : f_{!} \circ e \rightarrow \underline{Y}$ (in the $\infty $-category $\operatorname{Fun}(K, \operatorname{\mathcal{E}}_{D})$).
The diagram $(f_{!} \circ e): K \rightarrow \operatorname{\mathcal{E}}_{D}$ admits an extension to $K^{\triangleright }$.
The equivalence $(\ast ) \Leftrightarrow (\ast ')$ follows from Remark 5.1.3.8 (applied to the cocartesian fibration $\operatorname{Fun}(K,\operatorname{\mathcal{E}}) \rightarrow \operatorname{Fun}(K,\operatorname{\mathcal{C}})$), and the equivalence $(\ast ') \Leftrightarrow (\ast '')$ from Theorem 4.6.4.17. In the case where $U$ is a left fibration, we can further reformulate conditions $(\ast '')$ as follows:
- $(\ast ''')$
The diagram $(f_{!} \circ e): K \rightarrow \operatorname{\mathcal{E}}_{D}$ is nullhomotopic.
Proof of Proposition 9.1.3.8. The implications $(1) \Rightarrow (2)$ and $(3) \Rightarrow (2)$ are immediate from the definitions, and the implication $(2) \Rightarrow (1)$ follows from Lemma 9.1.3.1. We will complete the proof by showing that $(2) \Rightarrow (3)$. Let $C \in \operatorname{\mathcal{C}}$ be an object and let $e: K \rightarrow \operatorname{\mathcal{E}}_{C}$ be a diagram, where $K$ is a $\kappa $-small simplicial set. It follows from $(2)$ that there exists an object $X \in \operatorname{\mathcal{E}}$ and a natural transformation $\beta : e \rightarrow \underline{X}$ in the $\infty $-category $\operatorname{Fun}(K, \operatorname{\mathcal{E}})$. Set $C' = U(X)$ and form a pushout diagram of simplicial sets
By construction, $U(\beta )$ corresponds to a diagram in $\operatorname{\mathcal{C}}$ which factors as a composition
Since $L$ is $\kappa $-small and $\operatorname{\mathcal{C}}$ is $\kappa $-filtered, the diagram $s$ admits an extension $\overline{s}: L^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$. Let $D \in \operatorname{\mathcal{C}}$ be the image under $\overline{s}$ of the cone point of $L^{\triangleright }$. Restricting $\overline{s}$ to the edges $\{ C\} ^{\triangleright } \subseteq L^{\triangleright }$ and $\{ C'\} ^{\triangleright } \subseteq L^{\triangleright }$, we obtain a pair of morphisms $f: C \rightarrow D$ and $g: C' \rightarrow D$. Note that $q$ extends to a morphism $\overline{q}: \Delta ^2 \times K \rightarrow L^{\triangleright }$, carrying $\{ 2\} \times K$ to the cone point of $L^{\triangleright }$. Let us identify the composition $\overline{s} \circ \overline{q}$ with a $2$-simplex $\sigma $ of the $\infty $-category $\operatorname{Fun}(K, \operatorname{\mathcal{C}})$, which we depict as a diagram
Since $U$ is a cocartesian fibration, we can write $g = U( \widetilde{g} )$ for some morphism $\widetilde{g}: X \rightarrow Y$ of $\operatorname{\mathcal{E}}$. Let $\gamma : \underline{X} \rightarrow \underline{Y}$ denote the image of $\widetilde{g}$ under the diagonal map $\operatorname{\mathcal{E}}\rightarrow \operatorname{Fun}(K, \operatorname{\mathcal{E}})$. Using Corollary 4.1.4.2, we can lift $\sigma $ to a $2$-simplex
of the $\infty $-category $\operatorname{Fun}(K, \operatorname{\mathcal{E}})$. By construction, we have $U( \alpha ) = \underline{f}$, so the morphism $f$ satisfies condition $(\ast )$. $\square$
Remark 9.1.3.10. In the situation of Proposition 9.1.3.8, suppose that $\kappa = \aleph _0$. In this case, it suffices to verify conditions $(2)$ and $(3)$ in the special case where $K$ has the form $\operatorname{\partial \Delta }^ n$, for some integer $n \geq 0$. See Lemma 9.1.2.12.
Corollary 9.1.3.11. Let $\kappa $ be an infinite cardinal, let $\operatorname{\mathcal{C}}$ be a $\kappa $-filtered $\infty $-category, and let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a cocartesian fibration. Assume that, for each object $C \in \operatorname{\mathcal{C}}$, the $\infty $-category $\operatorname{\mathcal{E}}_{C} = \{ C\} \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}$ is $\kappa $-filtered. Then $\operatorname{\mathcal{E}}$ is $\kappa $-filtered.