9.1.4 Digression: Commutation of Limits and Colimits
Let $K$ be a simplicial set, and let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits $K$-indexed colimits. Then, for every simplicial set $L$, the $\infty $-category $\operatorname{Fun}(L, \operatorname{\mathcal{C}})$ also admits $K$-indexed colimits, which can be computed levelwise (Proposition 7.1.7.2). Assume that $\operatorname{\mathcal{C}}$ also admits $L$-indexed limits, so that the formation of limits determines a functor $\varprojlim : \operatorname{Fun}(L, \operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{C}}$. Suppose we are given a morphism $K \rightarrow \operatorname{Fun}(L, \operatorname{\mathcal{C}})$, which we identify with a diagram $\mathscr {F}: K \times L \rightarrow \operatorname{\mathcal{C}}$. Applying Remark 7.1.4.8, we obtain a comparison map
\[ \gamma : \varinjlim _{k \in K} \varprojlim _{\ell \in L} \mathscr {F}(k,\ell ) \rightarrow \varprojlim _{\ell \in L} \varinjlim _{k \in K} \mathscr {F}(k, \ell ) \]
in the $\infty $-category $\operatorname{\mathcal{C}}$. In this section, we study situations in which $\gamma $ is an isomorphism. This condition has several equivalent formulations.
Proposition 9.1.4.1. Let $K$ and $L$ be simplicial sets, and let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits $K$-indexed colimits and $L$-indexed limits. The following conditions are equivalent:
- $(1)$
The limit functor $\varprojlim : \operatorname{Fun}(L, \operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{C}}$ preserves $K$-indexed colimits.
- $(2)$
The full subcategory of $\operatorname{Fun}( L^{\triangleleft }, \operatorname{\mathcal{C}})$ spanned by the limit diagrams is closed under the formation of $K$-indexed colimits.
- $(3)$
The colimit functor $\varinjlim : \operatorname{Fun}(K, \operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{C}}$ preserves $L$-indexed limits.
- $(4)$
The full subcategory of $\operatorname{Fun}( K^{\triangleright }, \operatorname{\mathcal{C}})$ spanned by the colimit diagrams is closed under the formation of $L$-indexed limits.
Proof.
We will show that $(1) \Leftrightarrow (2)$ and that $(4) \Rightarrow (2)$; the implications $(3) \Leftrightarrow (4)$ and $(2) \Rightarrow (4)$ then follow by applying the same arguments to the opposite $\infty $-category $\operatorname{\mathcal{C}}^{\operatorname{op}}$. In what follows, we let $u$ and $v$ denote the cone points of the simplicial sets $K^{\triangleright }$ and $L^{\triangleleft }$, respectively.
We first show that $(1) \Leftrightarrow (2)$. Let $\operatorname{Fun}'( L^{\triangleleft }, \operatorname{\mathcal{C}})$ denote the full subcategory of $\operatorname{Fun}(L^{\triangleleft }, \operatorname{\mathcal{C}})$ spanned by the limit diagrams in $\operatorname{\mathcal{C}}$. Since $\operatorname{\mathcal{C}}$ admits $L$-indexed limits, the restriction functor
\[ \operatorname{Fun}'( L^{\triangleleft }, \operatorname{\mathcal{C}}) \rightarrow \operatorname{Fun}(L, \operatorname{\mathcal{C}}) \quad \quad \overline{u} \mapsto \overline{u}|_{L} \]
is a trivial Kan fibration, and therefore admits a section $s: \operatorname{Fun}(L, \operatorname{\mathcal{C}}) \rightarrow \operatorname{Fun}'( L^{\triangleleft }, \operatorname{\mathcal{C}})$ which is an equivalence of $\infty $-categories. In particular, the $\infty $-category $\operatorname{Fun}'( L^{\triangleleft }, \operatorname{\mathcal{C}})$ admits $K$-indexed colimits, so condition $(2)$ is equivalent to the requirement that the inclusion functor $\operatorname{Fun}'( L^{\triangleleft }, \operatorname{\mathcal{C}}) \hookrightarrow \operatorname{Fun}(L^{\triangleleft }, \operatorname{\mathcal{C}})$ preserves $K$-indexed colimits. Using the criterion of Proposition 7.1.7.2, we see that this is equivalent to the requirement that the composite functor
\[ \operatorname{Fun}(L,\operatorname{\mathcal{C}}) \xrightarrow {s} \operatorname{Fun}'( L^{\triangleleft }, \operatorname{\mathcal{C}}) \hookrightarrow \operatorname{Fun}(L^{\triangleleft }, \operatorname{\mathcal{C}}) \xrightarrow { \operatorname{ev}_{v} } \operatorname{\mathcal{C}} \]
preserves $K$-indexed colimits. Since this composition is isomorphic to the limit functor $\varprojlim : \operatorname{Fun}(L, \operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{C}}$ (Remark 7.1.7.8), this is reformulation of condition $(1)$.
We now show that $(2) \Rightarrow (4)$. Suppose we are given a colimit diagram $f: K \rightarrow \operatorname{Fun}( L^{\triangleleft }, \operatorname{\mathcal{C}})$ which carries each vertex $k \in K$ to an object of $\operatorname{Fun}'( L^{\triangleleft }, \operatorname{\mathcal{C}})$; we wish to show that the colimit of $f$ has the same property. Choose an extension of $f$ to a colimit diagram $\overline{f}: K^{\triangleright } \rightarrow \operatorname{Fun}( L^{\triangleleft }, \operatorname{\mathcal{C}})$, which we identify with a morphism of simplicial sets $\overline{F}: K^{\triangleright } \times L^{\triangleleft } \rightarrow \operatorname{\mathcal{C}}$. The restriction $F|_{K^{\triangleright } \times L }$ can be identified with a diagram $g: L \rightarrow \operatorname{Fun}(K^{\triangleright }, \operatorname{\mathcal{C}})$. Our assumption that $\overline{f}$ is a colimit diagram guarantees that, for each vertex $\ell \in L$, the image $g_0( \ell )$ is a colimit diagram in $\operatorname{\mathcal{C}}$. Since the $\infty $-category $\operatorname{Fun}(K^{\triangleright }, \operatorname{\mathcal{C}})$ admits $L$-indexed limits, we can extend $g$ to a limit diagram $\overline{g}: L^{\triangleleft } \rightarrow \operatorname{Fun}(K^{\triangleright }, \operatorname{\mathcal{C}})$. If condition $(4)$ is satisfied, then $\overline(v) \in \operatorname{Fun}(K^{\triangleright }, \operatorname{\mathcal{C}})$ is also a colimit diagram in $\operatorname{\mathcal{C}}$. Let us identify $\overline{g}$ with a morphism of simplicial sets $\overline{G}: K^{\triangleright } \times L^{\triangleleft } \rightarrow \operatorname{\mathcal{C}}$, which we further identify with a diagram $\overline{f}': K^{\triangleright } \rightarrow \operatorname{Fun}( L^{\triangleleft }, \operatorname{\mathcal{C}})$. Since $K$-indexed colimits in $\operatorname{Fun}( L^{\triangleleft }, \operatorname{\mathcal{C}})$ are computed levelwise (Proposition 7.1.7.2), $\overline{f}'$ is a colimit diagram. Moreover, we have $\overline{f}'|_{K} = f$ by construction. We are therefore reduced to showing that $\overline{f}'(u) \in \operatorname{Fun}(L^{\triangleleft }, \operatorname{\mathcal{C}})$ is a limit diagram. This follows from our assumption that $\overline{g}$ is a limit diagram, since the evaluation functor $\operatorname{ev}_{u}: \operatorname{Fun}(K^{\triangleright }, \operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{C}}$ preserves $L$-indexed limits.
$\square$
Definition 9.1.4.2. Let $K$ and $L$ be simplicial sets, and let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits $K$-indexed colimits and $L$-indexed limits. We say that $K$-indexed colimits commute with $L$-indexed limits in $\operatorname{\mathcal{C}}$ if the equivalent conditions of Proposition 9.1.4.1 are satisfied.
We will be particularly interested in the special case where $\operatorname{\mathcal{C}}= \operatorname{\mathcal{S}}$ is the $\infty $-category of spaces. In this case, we can reformulate Definition 9.1.4.2 as follows:
Proposition 9.1.4.3. Let $K$ and $L$ be small simplicial sets. Then $K$-indexed colimits commute with $L$-indexed limits in the $\infty $-category $\operatorname{\mathcal{S}}$ if and only if the following condition is satisfied:
- $(\ast )$
Let $\operatorname{Fun}'(K, \operatorname{\mathcal{S}})$ denote the full subcategory of $\operatorname{Fun}(K, \operatorname{\mathcal{S}})$ spanned by those diagrams $\mathscr {F}: K \rightarrow \operatorname{\mathcal{S}}$ for which the colimit $\varinjlim (\mathscr {F}) \in \operatorname{\mathcal{S}}$ is contractible. Then $\operatorname{Fun}'(K, \operatorname{\mathcal{S}})$ is closed under $L$-indexed limits.
Following the convention of Remark 4.7.0.5, we can regard Proposition 9.1.4.3 as a special case of the following:
Variant 9.1.4.4. Let $\kappa $, $\lambda $, and $\mu $ be infinite cardinals, let $K$ be a $\kappa $-small simplicial set, and let $L$ be a $\lambda $-small simplicial set. Assume that $\mu $ is uncountable of cofinality $\geq \kappa $ and exponential cofinality $\geq \lambda $, so that the $\infty $-category $\operatorname{\mathcal{S}}^{< \mu }$ admits $K$-indexed colimits (Example 7.6.6.8) and $L$-indexed limits (Example 7.6.6.4). Then $K$-indexed colimits commute with $L$-indexed limits in the $\infty $-category $\operatorname{\mathcal{S}}^{< \mu }$ if and only if the following condition is satisfied:
- $(\ast )$
Let $\operatorname{Fun}'(K, \operatorname{\mathcal{S}}^{< \mu })$ denote the full subcategory of $\operatorname{Fun}(K, \operatorname{\mathcal{S}}^{< \mu })$ spanned by those diagrams $\mathscr {F}: K \rightarrow \operatorname{\mathcal{S}}$ for which the colimit $\varinjlim (\mathscr {F}) \in \operatorname{\mathcal{S}}^{< \mu }$ is contractible. Then $\operatorname{Fun}'(K, \operatorname{\mathcal{S}}^{< \mu })$ is closed under $L$-indexed limits.
Proof.
Let $\operatorname{\mathcal{C}}\subseteq \operatorname{\mathcal{S}}^{< \mu }$ denote the full subcategory spanned by the contractible Kan complexes. Then $\operatorname{\mathcal{C}}$ is closed under the formation of $L$-indexed limits. By definition, $\operatorname{Fun}'( K, \operatorname{\mathcal{S}}^{< \mu } )$ is the inverse image of $\operatorname{\mathcal{C}}$ under the colimit functor $\varinjlim : \operatorname{Fun}(K, \operatorname{\mathcal{S}}^{< \mu } ) \rightarrow \operatorname{\mathcal{S}}^{< \mu }$. If $K$-indexed colimits commute with $L$-indexed limits in $\operatorname{\mathcal{S}}^{< \mu }$, then the functor $\varinjlim $ preserves $L$-indexed limits, so that $\operatorname{Fun}'( K, \operatorname{\mathcal{S}}^{< \mu } )$ is closed under the formation of $L$-indexed limits.
We now prove the converse. Assume that condition $(\ast )$ is satisfied; we wish to show that $K$-indexed colimits commute with $L$-indexed limits in the $\infty $-category $\operatorname{\mathcal{S}}^{< \mu }$. In what follows, if $Z$ is an object of $\operatorname{\mathcal{S}}^{< \mu }$, we let $\underline{Z}_{K}$ denote the constant diagram $K \rightarrow \operatorname{\mathcal{S}}^{\mu }$ taking the value $Z$, and $\underline{Z}_{L}$ for the constant diagram $L \rightarrow \operatorname{\mathcal{S}}^{< \mu }$ taking the value $Z$. Suppose we are given diagrams
\[ \mathscr {F}: L \rightarrow \operatorname{Fun}(K, \operatorname{\mathcal{S}}^{< \mu } )\quad \quad X: L \rightarrow \operatorname{\mathcal{S}}^{< \mu }, \]
having limits $\varprojlim (\mathscr {F} ) \in \operatorname{Fun}(K, \operatorname{\mathcal{S}}^{< \mu } )$ and $\varprojlim (X) \in \operatorname{\mathcal{S}}^{< \mu }$, respectovely. Write $\underline{X}_{K}$ for the $L$-indexed diagram in $\operatorname{Fun}(L, \operatorname{\mathcal{S}}^{< \mu }$ given by the construction $\ell \mapsto \underline{ X(\ell ) }$. Assume we are given a natural transformation $\gamma : \mathscr {F} \rightarrow \underline{X}_{K}$, carrying each vertex $\ell \in L$ to a natural transformation $\gamma (\ell ): \mathscr {F}(\ell ) \rightarrow \underline{ X(\ell ) }_{K}$. We wish to show that the induced map $\varprojlim (\gamma ): \varprojlim (\mathscr {F}) \rightarrow \underline{ \varprojlim (X) }_{K}$ exhibits the Kan complex $\varprojlim (X)$ as a colimit of the $K$-indexed diagram $\varprojlim (\mathscr {F})$. To prove this, we will show that $\varprojlim (\gamma )$ satisfies the criterion of Corollary 7.7.0.6. Let $f: Y \rightarrow \varprojlim (X)$ be a morphism of Kan complexes, where $Y$ is contractible, and suppose we are given a (levelwise) pullback square $\sigma :$
\[ \xymatrix { \mathscr {G} \ar [r]^{ \beta } \ar [d] & \underline{Y}_{K} \ar [d]^{ \underline{f}_{K} } \\ \varprojlim (\mathscr {F}) \ar [r]^{ \varprojlim (\gamma )} & \underline{ \varprojlim (X) }_{K} } \]
in the $\infty $-category $\operatorname{Fun}(K, \operatorname{\mathcal{S}}^{< \mu } )$; we wish to show that the diagram $\mathscr {G}$ has contractible colimit. Note that $f$ determines a natural transformation of $L$-indexed diagrams $\alpha : \underline{Y}_{L} \rightarrow X$. Since the limit functor $\varprojlim : \operatorname{Fun}(L, \operatorname{\mathcal{S}}^{< \mu } ) \rightarrow \operatorname{\mathcal{S}}^{< \mu }$ preserves pullback squares, we can identify $\sigma $ with the limit of an $L$-indexed diagram of pullback squares in $\operatorname{Fun}(K, \operatorname{\mathcal{S}}^{< \mu } )$, carrying each $\ell \in L$ to a diagram $\sigma _{\ell }:$
\[ \xymatrix { \mathscr {G}_{\ell } \ar [r]^{\beta _{\ell } } \ar [d] & \underline{Y}_{K} \ar [d]^{ \underline{ \alpha (\ell ) }_{K} } \\ \mathscr {F}(\ell ) \ar [r]^{ \gamma (\ell ) } & \underline{ X(\ell ) }_{K}. } \]
By virtue of condition $(\ast )$, it will suffice to show that each of the diagrams $\mathscr {G}_{\ell }: K \rightarrow \operatorname{\mathcal{S}}^{< \mu }$ has a contractible colimit. This follows from the criterion of Corollary 7.7.0.6, since $\gamma (\ell )$ exhibits $X(\ell )$ as a colimit of $\mathscr {F}(\ell )$.
$\square$
Corollary 9.1.4.5. Let $\operatorname{\mathcal{K}}$ be a small $\infty $-category and let $L$ be a small simplicial set. Suppose that $\operatorname{\mathcal{K}}$-indexed colimits commute with $L$-indexed limits in the $\infty $-category $\operatorname{\mathcal{S}}$. Then the diagonal map $\operatorname{\mathcal{K}}\rightarrow \operatorname{Fun}( L^{\operatorname{op}}, \operatorname{\mathcal{K}})$ is right cofinal.
Warning 9.1.4.6. The converse of Corollary 9.1.4.5 is false in general. For example, suppose that $\operatorname{\mathcal{K}}$ is the nerve of the linearly ordered set $\{ 0 < 1 < 2 < \cdots \} $, and let $L$ be a simplicial set having exactly one vertex. Then the diagonal map $\operatorname{\mathcal{K}}\rightarrow \operatorname{Fun}( L^{\operatorname{op}}, \operatorname{\mathcal{K}})$ is an isomorphism (in particular, it is right cofinal). But it is usually not true that sequential colimits commute with $L$-indexed limits in the $\infty $-category $\operatorname{\mathcal{S}}$.
As above, we can regard Corollary 9.1.4.5 as a special case of a more precise assertion:
Variant 9.1.4.7. Let $\kappa $, $\lambda $, and $\mu $ be infinite cardinals. Assume that $\kappa $ is uncountable and that $\mu $ has cofinality $\geq \kappa $ and exponential cofinality $\geq \lambda $. Let $\operatorname{\mathcal{K}}$ be a $\kappa $-small $\infty $-category and let $L$ be a $\lambda $-small simplicial set. If $\operatorname{\mathcal{K}}$-indexed colimits commute with $L$-indexed limits in the $\infty $-category $\operatorname{\mathcal{S}}^{< \mu }$, then the diagonal map $\operatorname{\mathcal{K}}\rightarrow \operatorname{Fun}( L^{\operatorname{op}}, \operatorname{\mathcal{K}})$ is right cofinal.
Proof.
By virtue of Corollary 7.2.3.9, it will suffice to show that for every diagram $f: L^{\operatorname{op}} \rightarrow \operatorname{\mathcal{K}}$, the coslice $\infty $-category $\operatorname{\mathcal{K}}_{f/}$ is weakly contractible. Let $h^{\bullet }: \operatorname{\mathcal{K}}^{\operatorname{op}} \rightarrow \operatorname{Fun}( \operatorname{\mathcal{K}}, \operatorname{\mathcal{S}}^{< \mu } )$ be a contravariant Yoneda embedding for $\operatorname{\mathcal{K}}$. Since the $\infty $-category $\operatorname{\mathcal{S}}^{< \mu }$ admits $L$-indexed limits, the composite diagram
\[ L \xrightarrow { f^{\operatorname{op}} } \operatorname{\mathcal{K}}^{\operatorname{op}} \xrightarrow {h^{\bullet }} \operatorname{Fun}( \operatorname{\mathcal{K}}, \operatorname{\mathcal{S}}^{< \mu } ) \]
admits a limit $\mathscr {F} \in \operatorname{Fun}( \operatorname{\mathcal{K}}, \operatorname{\mathcal{S}}^{< \mu } )$. It follows from Corollary 8.4.2.8 that $\mathscr {F}$ is a covariant transport representation for the left fibration $\operatorname{\mathcal{K}}_{f/} \rightarrow \operatorname{\mathcal{K}}$. Consequently, the $\infty $-category $\operatorname{\mathcal{K}}_{f/}$ is weakly contractible if and only if the colimit $\varinjlim (\mathscr {F} )$ is contractible (Proposition 7.4.3.1). Invoking our assumption that $\operatorname{\mathcal{K}}$-indexed colimits commute with $L$-indexed limits, we are reduced to proving that for each vertex $\ell \in L$, the corepresentable functor $\operatorname{Hom}_{\operatorname{\mathcal{K}}}( f(\ell ), \bullet )$ has contractible colimit, which follows from Example 7.4.3.7.
$\square$
Compare with condition $(\ast )$ of Proposition 9.1.4.3.