Corollary 7.7.0.6. Let $\mathscr {F}: K \rightarrow \operatorname{\mathcal{S}}$ be a small diagram. Suppose we are given a Kan complex $X \in \operatorname{\mathcal{S}}$ and a natural transformation $\beta : \mathscr {F} \rightarrow \underline{X}$. The following conditions are equivalent:
- $(1)$
The natural transformation $\beta $ exhibits $C$ as a colimit of the diagram $\mathscr {F}$.
- $(2)$
For every map of Kan complexes $f: X' \rightarrow X$ and every levelwise pullback square
\[ \xymatrix { \mathscr {F}' \ar [r]^{ \beta ' } \ar [d] & \underline{X}' \ar [d]^{ \underline{f} } \\ \mathscr {F} \ar [r]^{\beta } & \underline{X} } \]the natural transformation $\beta '$ exhibits $X'$ as a colimit of $\mathscr {F}'$.
- $(3)$
For every vertex $x \in X$ and every levelwise pullback square
\[ \xymatrix { \mathscr {F}' \ar [r]^{ \beta ' } \ar [d] & \underline{ \{ x\} } \ar [d] \\ \mathscr {F} \ar [r]^{\beta } & \underline{X} } \]the natural transformation $\beta '$ exhibits $\{ x\} $ as a colimit of $\mathscr {F}'$ (here the right vertical map is induced by the inclusion $\{ x\} \hookrightarrow X$).
- $(4)$
For every vertex $x \in X$, the diagram $\mathscr {F}' = \underline{ \{ x\} } \times _{ \underline{X} } \mathscr {F}$ has a contractible colimit in $\operatorname{\mathcal{S}}$.