Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Example 7.6.7.4. Let $\lambda $ be an uncountable regular cardinal and let $\kappa = \mathrm{ecf}(\lambda )$ be its exponential cofinality (Definition 4.7.3.16). Let $\operatorname{\mathcal{S}}^{< \lambda }$ denote the $\infty $-category of $\lambda $-small spaces (Variant 5.5.4.12) and let $\operatorname{\mathcal{QC}}^{ < \lambda }$ denote the $\infty $-category of $\lambda $-small $\infty $-categories (Variant 5.5.4.10). Then the $\infty $-categories $\operatorname{\mathcal{S}}^{< \lambda }$ and $\operatorname{\mathcal{QC}}^{< \lambda }$ are $\kappa $-complete. Moreover, the inclusion maps

\[ \operatorname{\mathcal{S}}^{ < \lambda } \hookrightarrow \operatorname{\mathcal{S}}\quad \quad \operatorname{\mathcal{QC}}^{< \lambda } \hookrightarrow \operatorname{\mathcal{QC}} \]

preserve $\kappa $-small limits. See Corollary 7.4.1.13 and Variant 7.4.5.8. In particular, if $\kappa = \lambda $ is a strongly inaccessible cardinal, then the $\infty $-categories $\operatorname{\mathcal{S}}^{< \kappa }$ and $\operatorname{\mathcal{QC}}^{< \kappa }$ are $\kappa $-complete.