Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Example 7.6.7.7. Let $\lambda $ be an uncountable regular cardinal and let $\kappa = \mathrm{cf}(\lambda )$ denote its cofinality. Then the $\infty $-categories $\operatorname{\mathcal{S}}^{< \lambda }$ and $\operatorname{\mathcal{QC}}^{< \lambda }$ admit $\kappa $-small colimits. Moreover, the inclusion maps

\[ \operatorname{\mathcal{S}}^{ < \lambda } \hookrightarrow \operatorname{\mathcal{S}}\quad \quad \operatorname{\mathcal{QC}}^{< \lambda } \hookrightarrow \operatorname{\mathcal{QC}} \]

preserve $\kappa $-small colimits. See Corollary 7.4.3.15 and Remark 7.4.5.7. In particular, if $\kappa = \lambda $ is an uncountable regular cardinal, then the $\infty $-categories $\operatorname{\mathcal{S}}^{< \kappa }$ and $\operatorname{\mathcal{QC}}^{< \kappa }$ admit $\kappa $-small colimits.