Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Example 7.6.6.8. Let $\lambda $ be an uncountable cardinal and let $\kappa = \mathrm{cf}(\lambda )$ denote its cofinality. Then the $\infty $-categories $\operatorname{\mathcal{S}}_{< \lambda }$ and $\operatorname{\mathcal{QC}}_{< \lambda }$ are $\kappa $-cocomplete. Moreover, the inclusion maps

\[ \operatorname{\mathcal{S}}_{ < \lambda } \hookrightarrow \operatorname{\mathcal{S}}\quad \quad \operatorname{\mathcal{QC}}_{< \lambda } \hookrightarrow \operatorname{\mathcal{QC}} \]

preserve $\kappa $-small colimits. See Corollaries 7.4.5.22 and 7.4.3.8. In particular, if $\kappa = \lambda $ is an uncountable regular cardinal, then the $\infty $-categories $\operatorname{\mathcal{S}}_{< \kappa }$ and $\operatorname{\mathcal{QC}}_{< \kappa }$ are $\kappa $-cocomplete.