Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 7.4.5.20. Let $\lambda $ be an uncountable cardinal and let $\kappa = \mathrm{cf}(\lambda )$ be the cofinality of $\lambda $. Then the $\infty $-category $\operatorname{\mathcal{QC}}^{< \lambda }$ admits $\kappa $-small colimits, which are preserved by the inclusion functors $\operatorname{\mathcal{QC}}^{< \lambda } \hookrightarrow \operatorname{\mathcal{QC}}^{< \mu }$ for $\mu \geq \lambda $.