Proposition 7.4.5.1. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a cocartesian fibration between small simplicial sets, and let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{QC}}$ be a covariant transport representation of $U$. Then the diagram $\mathscr {F}$ admits a colimit in $\operatorname{\mathcal{QC}}$. Moreover, an object $\operatorname{\mathcal{D}}\in \operatorname{\mathcal{QC}}$ is a colimit of the diagram $\mathscr {F}$ if and only if it is equivalent to the localization $\operatorname{\mathcal{E}}[W^{-1}]$, where $W$ is the collection of all $U$-cocartesian morphisms of $\operatorname{\mathcal{E}}$.
7.4.5 Colimits of $\infty $-Categories
Let $\operatorname{\mathcal{QC}}$ denote the $\infty $-category of (small) $\infty $-categories (Construction 5.5.4.1). Our goal in this section is to show that $\operatorname{\mathcal{QC}}$ admits small colimits: that is, every diagram $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{QC}}$ indexed by a small simplicial set $\operatorname{\mathcal{C}}$ admits a colimit in $\operatorname{\mathcal{C}}$. In the situation where $\mathscr {F}(C)$ is a Kan complex for each $C \in \operatorname{\mathcal{C}}$, this follows from the results of §7.4.3: if we choose a weak homotopy equivalence $T: \int _{\operatorname{\mathcal{C}}} \mathscr {F} \rightarrow X$, where $X$ is a Kan complex, then $X$ is a colimit of $\mathscr {F}$ in the $\infty $-category $\operatorname{\mathcal{S}}$ (Proposition 7.4.3.1), and therefore also in the $\infty $-category $\operatorname{\mathcal{QC}}$ (Remark 7.4.5.4). Recall that $T$ is a weak homotopy equivalence if and only if it exhibits $X$ as a localization $(\int _{\operatorname{\mathcal{C}}} \mathscr {F})[W^{-1}]$, where $W$ is the collection of all edges of the simplicial set $\int _{\operatorname{\mathcal{C}}} \mathscr {F}$ (Proposition 6.3.1.20). This is a special case of the following more general assertion:
Corollary 7.4.5.2. Let $\operatorname{\mathcal{C}}$ be a small simplicial set, let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{QC}}$ be a diagram, let $U: \int _{\operatorname{\mathcal{C}}} \mathscr {F} \rightarrow \operatorname{\mathcal{C}}$ denote the projection map, and let $W$ be the collection of all $U$-cocartesian morphisms of $\int _{\operatorname{\mathcal{C}}} \mathscr {F}$. Then the localization $( \int _{\operatorname{\mathcal{C}}} \mathscr {F})[W^{-1} ]$ is a colimit of the diagram $\mathscr {F}$ in the $\infty $-category $\operatorname{\mathcal{QC}}$.
Proof. Apply Proposition 7.4.5.1 in the case $\operatorname{\mathcal{E}}= \int _{\operatorname{\mathcal{C}}} \mathscr {F}$. $\square$
Corollary 7.4.5.3. The $\infty $-category $\operatorname{\mathcal{QC}}$ admits small colimits.
Remark 7.4.5.4. Let $\operatorname{\mathcal{C}}$ be a small simplicial set, let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{QC}}$ be a diagram, and let $\varinjlim (\mathscr {F} )$ denote its colimit (formed in the $\infty $-category $\operatorname{\mathcal{QC}}$). Assume that, for each vertex $C \in \operatorname{\mathcal{C}}$, the $\infty $-category $\mathscr {F}(C)$ is a Kan complex. Then $\varinjlim (\mathscr {F} )$ is also a Kan complex, which can be regarded as a limit of $\mathscr {F}$ in the subcategory $\operatorname{\mathcal{S}}\subset \operatorname{\mathcal{QC}}$. In particular, the inclusion functor $\operatorname{\mathcal{S}}\hookrightarrow \operatorname{\mathcal{QC}}$ preserves small colimits. This is a special case of Variant 7.1.4.25, since $\operatorname{\mathcal{S}}$ is a coreflective subcategory of $\operatorname{\mathcal{QC}}$ (Example 6.2.2.6). However, it can also be deduced directly from Corollary 7.4.5.2: the assumption that each $\mathscr {F}(C)$ is a Kan complex guarantees that the projection map $U: \int _{\operatorname{\mathcal{C}}} \mathscr {F} \rightarrow \operatorname{\mathcal{C}}$ is a left fibration (Example 5.6.2.9). In particular, every edge of the simplicial set $\int _{\operatorname{\mathcal{C}}} \mathscr {F}$ is $U$-cocartesian (Example 5.1.1.3), so that the localization $(\int _{\operatorname{\mathcal{C}}} \mathscr {F})[W^{-1}]$ is automatically a Kan complex (Proposition 6.3.1.20).
Corollary 7.4.5.5. Let $\operatorname{\mathcal{C}}$ be a small category and let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{QCat}$ be a (strictly commutative) diagram of $\infty $-categories indexed by $\operatorname{\mathcal{C}}$. Let $U: \operatorname{N}_{\bullet }^{\mathscr {F}}(\operatorname{\mathcal{C}}) \rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$ be the cocartesian fibration of Definition 5.3.3.1, and let $W$ be the collection of $U$-cocartesian morphisms of $\operatorname{N}_{\bullet }^{\mathscr {F}}(\operatorname{\mathcal{C}})$. Then the localization $\operatorname{N}_{\bullet }^{\mathscr {F}}(\operatorname{\mathcal{C}})[W^{-1}]$ is a colimit of the diagram $\operatorname{N}_{\bullet }^{\operatorname{hc}}(\mathscr {F}): \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{QC}}$.
Proof. Combine Proposition 7.4.5.1 with Example 5.6.5.6. $\square$
We will deduce Proposition 7.4.5.1 from a more precise result, which characterizes cocartesian fibrations $\overline{U}: \overline{\operatorname{\mathcal{E}}} \rightarrow \operatorname{\mathcal{C}}^{\triangleright }$ for which the covariant transport representation $\overline{\mathscr {F}}: \operatorname{\mathcal{C}}^{\triangleright } \rightarrow \operatorname{\mathcal{QC}}$ is a colimit diagram. Let ${\bf 1} \in \operatorname{\mathcal{C}}^{\triangleright }$ denote the cone point. For every vertex $C \in \operatorname{\mathcal{C}}$, there is a unique edge $e_{C}: C \rightarrow {\bf 1}$ in $\operatorname{\mathcal{C}}^{\triangleright }$. Covariant transport along $e_{C}$ determines a functor
In what follows, it will be convenient to amalgamate the functors $\{ e_{C!} \} _{C \in \operatorname{\mathcal{C}}}$ into a single morphism $\mathrm{Rf}: \operatorname{\mathcal{C}}\times _{\operatorname{\mathcal{C}}^{\triangleright } } \overline{\operatorname{\mathcal{E}}} \rightarrow \overline{\operatorname{\mathcal{E}}}_{ {\bf 1} }$, which we will refer to as the covariant refraction diagram.
Definition 7.4.5.6. Let $\operatorname{\mathcal{C}}$ be a simplicial set and let ${\bf 1}$ denote the cone point of the simplicial set $\operatorname{\mathcal{C}}^{\triangleright } \simeq \operatorname{\mathcal{C}}\star \{ {\bf 1} \} $. Suppose that we are given a cocartesian fibration $\overline{U}: \overline{\operatorname{\mathcal{E}}} \rightarrow \operatorname{\mathcal{C}}^{\triangleright }$, and set We will say that a morphism $\mathrm{Rf}: \operatorname{\mathcal{E}}\rightarrow \overline{\operatorname{\mathcal{E}}}_{ {\bf 1} }$ is a covariant refraction diagram if there exists a morphism of simplicial sets $H: \Delta ^1 \times \operatorname{\mathcal{E}}\rightarrow \overline{\operatorname{\mathcal{E}}}$ satisfying the following conditions:
The restriction $H|_{ \{ 0\} \times \operatorname{\mathcal{E}}}$ is the identity morphism from $\operatorname{\mathcal{E}}$ to itself.
The restriction $H|_{ \{ 1\} \times \operatorname{\mathcal{E}}}$ is equal to $\mathrm{Rf}$.
For every vertex $X \in \operatorname{\mathcal{E}}$, the restriction $H|_{ \Delta ^1 \times \{ X\} }$ is a $\overline{U}$-cocartesian edge of $\overline{\operatorname{\mathcal{E}}}$.
Remark 7.4.5.7. In the situation of Definition 7.4.5.6, suppose that $\mathrm{Rf}: \operatorname{\mathcal{E}}\rightarrow \overline{\operatorname{\mathcal{E}}}_{ {\bf 1} }$ is a covariant refraction diagram. Then, for every vertex $C \in \operatorname{\mathcal{C}}$, the restriction $\mathrm{Rf}|_{ \operatorname{\mathcal{E}}_{C} }: \operatorname{\mathcal{E}}_{C} \rightarrow \overline{\operatorname{\mathcal{E}}}_{ {\bf 1} }$ is given by covariant transport along the unique edge $e_{C}: C \rightarrow {\bf 1}$ of $\operatorname{\mathcal{C}}^{\triangleright }$, in the sense of Definition 5.2.2.4.
Proposition 7.4.5.8. Let $\overline{U}: \overline{\operatorname{\mathcal{E}}} \rightarrow \operatorname{\mathcal{C}}^{\triangleright }$ be a cocartesian fibration of simplicial sets, set $\operatorname{\mathcal{E}}= \operatorname{\mathcal{C}}\times _{\operatorname{\mathcal{C}}^{\triangleright } } \overline{\operatorname{\mathcal{E}}}$, and let ${\bf 1}$ denote the cone point of $\operatorname{\mathcal{C}}^{\triangleright }$. Then:
There exists a covariant refraction diagram $\mathrm{Rf}: \operatorname{\mathcal{E}}\rightarrow \overline{\operatorname{\mathcal{E}}}_{ {\bf 1} }$ (Definition 7.4.5.6).
Let $F: \operatorname{\mathcal{E}}\rightarrow \overline{\operatorname{\mathcal{E}}}_{{\bf 1}}$ be any morphism of simplicial sets. Then $F$ is a covariant refraction diagram if and only if it is isomorphic to $\mathrm{Rf}$ as an object of the $\infty $-category $\operatorname{Fun}( \operatorname{\mathcal{E}}, \overline{\operatorname{\mathcal{E}}}_{{\bf 1}} )$.
Proof. This is a special case of Lemma 5.2.2.13. $\square$
Example 7.4.5.9. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let ${\bf 1}$ denote the cone point of $\operatorname{\mathcal{C}}^{\triangleright }$. Using Example 5.2.3.18, we see that the tautological map $V: \operatorname{\mathcal{C}}^{\triangleright } \rightarrow (\Delta ^{0})^{\triangleright } \simeq \Delta ^1$ is a cocartesian fibration. If $\overline{U}: \overline{\operatorname{\mathcal{E}}} \rightarrow \operatorname{\mathcal{C}}^{\triangleright }$ is another cocartesian fibration, then the $\infty $-categories $\operatorname{\mathcal{E}}= \operatorname{\mathcal{C}}\times _{\operatorname{\mathcal{C}}^{\triangleright }} \overline{\operatorname{\mathcal{E}}}$ and $\overline{\operatorname{\mathcal{E}}}_{ {\bf 1} } = \{ {\bf 1} \} \times _{ \operatorname{\mathcal{C}}^{\triangleright } } \overline{\operatorname{\mathcal{E}}}$ can be identified with the fibers of the composite map which is also a cocartesian fibration (Proposition 5.1.4.14). In this case, the covariant refraction diagram $\mathrm{Rf}: \operatorname{\mathcal{E}}\rightarrow \overline{\operatorname{\mathcal{E}}}_{ {\bf 1} }$ of Proposition 7.4.5.8 is given by covariant transport for the cocartesian fibration $V \circ \overline{U}$ (along the nondegenerate edge of $\Delta ^1$).
Remark 7.4.5.10. Suppose we are given a pullback diagram of simplicial sets where $U$ and $\overline{U}$ are cocartesian fibrations. Let ${\bf 1}$ denote the cone point of $\operatorname{\mathcal{C}}^{\triangleright }$ and let $\mathrm{Rf}: \operatorname{\mathcal{E}}\rightarrow \overline{\operatorname{\mathcal{E}}}_{ {\bf 1} }$ be a covariant refraction diagram. For every $U$-cocartesian edge $e: X \rightarrow Y$ of $\operatorname{\mathcal{E}}$, the image $\mathrm{Rf}(e)$ is an isomorphism in the $\infty $-category $\overline{\operatorname{\mathcal{E}}}_{ {\bf 1} }$. To prove this, we observe that there is a morphism $\Delta ^1 \times \Delta ^1 \rightarrow \overline{\operatorname{\mathcal{E}}}$ as indicated in the diagram where the horizontal maps are $\overline{U}$-cocartesian. Applying Proposition 5.1.4.13, we deduce that $\mathrm{Rf}(e)$ is an $\overline{U}$-cocartesian edge of $\overline{\operatorname{\mathcal{E}}}$, and therefore an isomorphism in the $\infty $-category $\overline{\operatorname{\mathcal{E}}}_{ {\bf 1} }$ (Proposition 5.1.4.12).
We have the following recognition principle for colimits in the $\infty $-category $\operatorname{\mathcal{QC}}$:
Theorem 7.4.5.11 (Refraction Criterion). Let $\lambda $ be an uncountable cardinal and suppose we are given a pullback diagram of simplicial sets where $U$ and $\overline{U}$ are essentially $\lambda $-small cocartesian fibrations. Let $W$ be the collection of all $U$-cocartesian edges of $\operatorname{\mathcal{E}}$, and assume that the following condition is satisfied. Then the covariant transport representation $\operatorname{Tr}_{ \overline{\operatorname{\mathcal{E}}} / \operatorname{\mathcal{C}}^{\triangleright }}: \operatorname{\mathcal{C}}^{\triangleright } \rightarrow \operatorname{\mathcal{QC}}^{< \lambda }$ is a colimit diagram if the following condition is satisfied:
The covariant refraction diagram $\mathrm{Rf}: \operatorname{\mathcal{E}}\rightarrow \overline{\operatorname{\mathcal{E}}}_{ {\bf 1} }$ exhibits $\overline{\operatorname{\mathcal{E}}}_{ {\bf 1} }$ as a localization of $\operatorname{\mathcal{E}}$ with respect $W$.
The converse holds if $\operatorname{\mathcal{C}}$ is $\kappa $-small, where $\kappa = \mathrm{cf}(\lambda )$ is the cofinality of $\lambda $.
We will give the proof of Theorem 7.4.5.11 in §7.4.6.
Remark 7.4.5.12. In the statement of Theorem 7.4.5.11, the covariant refraction diagram $\mathrm{Rf}: \operatorname{\mathcal{E}}\rightarrow \overline{\operatorname{\mathcal{E}}}_{ {\bf 1} }$ and the covariant transport representation $\operatorname{Tr}_{ \overline{\operatorname{\mathcal{E}}} / \operatorname{\mathcal{C}}^{\triangleright } }: \operatorname{\mathcal{C}}^{\triangleright } \rightarrow \operatorname{\mathcal{QC}}^{< \lambda }$ are only well-defined up to isomorphism (as objects of the $\infty $-categories $\operatorname{Fun}( \operatorname{\mathcal{E}}, \overline{\operatorname{\mathcal{E}}}_{ {\bf 1} })$ and $\operatorname{Fun}( \operatorname{\mathcal{C}}^{\triangleright }, \operatorname{\mathcal{QC}}^{< \lambda } )$, respectively). However, the hypothesis and conclusion of the theorem depend only on their isomorphism classes (see Exercise 6.3.1.11 and Corollary 7.1.3.14).
Remark 7.4.5.13. In the statement of Theorem 7.4.5.11, condition $(\ast )$ does not depend on the cardinal $\lambda $. Consequently, if condition $(\ast )$ is satisfied, then $\overline{\mathscr {F}}$ is a also colimit diagram in the $\infty $-category $\operatorname{\mathcal{QC}}^{< \mu }$ for every cardinal $\mu \geq \lambda $.
Exercise 7.4.5.14. Let $\overline{U}: \overline{\operatorname{\mathcal{E}}} \rightarrow \operatorname{\mathcal{C}}^{\triangleright }$ and $\overline{U}': \overline{\operatorname{\mathcal{E}}}' \rightarrow \operatorname{\mathcal{C}}^{\triangleright }$ be cocartesian fibrations of simplicial sets which are equivalent as inner fibrations over $\operatorname{\mathcal{C}}^{\triangleright }$ (in the sense of Definition 5.1.7.1). Show that $\overline{U}$ satisfies condition $(\ast )$ of Theorem 7.4.5.11 if and only if $\overline{U}'$ satisfies condition $(\ast )$ of Theorem 7.4.5.11.
Corollary 7.4.5.15. Let $\operatorname{\mathcal{C}}$ be a small $\infty $-category, let $\overline{U}: \overline{\operatorname{\mathcal{E}}} \rightarrow \operatorname{\mathcal{C}}^{\triangleright }$ be an essentially small cocartesian fibration, and set $\operatorname{\mathcal{E}}= \operatorname{\mathcal{C}}\times _{ \operatorname{\mathcal{C}}^{\triangleright } } \overline{\operatorname{\mathcal{E}}}$. Let $F: \overline{\operatorname{\mathcal{E}}} \rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty $-categories which carries $\overline{U}$-cocartesian morphisms of $\overline{\operatorname{\mathcal{E}}}$ to isomorphisms in $\operatorname{\mathcal{D}}$. If the covariant transport representation $\operatorname{Tr}_{ \overline{\operatorname{\mathcal{E}}} / \operatorname{\mathcal{C}}^{\triangleright } }: \operatorname{\mathcal{C}}^{\triangleright } \rightarrow \operatorname{\mathcal{QC}}$ is a colimit diagram, then $F$ is left Kan extended from $\operatorname{\mathcal{E}}$.
Proof. Let $\mathrm{Rf}: \operatorname{\mathcal{E}}\rightarrow \overline{\operatorname{\mathcal{E}}}_{{\bf 1} }$ be a covariant refraction diagram, so that there exists a natural transformation $h: \operatorname{id}_{\operatorname{\mathcal{E}}} \rightarrow \mathrm{Rf}$ (in the $\infty $-category $\operatorname{Fun}( \operatorname{\mathcal{E}}, \overline{\operatorname{\mathcal{E}}} )$) which carries each object $X \in \operatorname{\mathcal{E}}$ to an $\overline{U}$-cocartesian morphism $h_{X}: X \rightarrow \mathrm{Rf}(X)$. Our assumption that $\operatorname{Tr}_{ \overline{\operatorname{\mathcal{E}}} / \operatorname{\mathcal{C}}^{\triangleright } }$ is a colimit diagram guarantees that the functor $\mathrm{Rf}$ exhibits $\overline{\operatorname{\mathcal{E}}}_{ {\bf 1} }$ as a localization of $\operatorname{\mathcal{E}}$ (Theorem 7.4.5.11). Moreover, for each object $X \in \operatorname{\mathcal{C}}$, the functor $F$ carries $h_{X}$ to an isomorphism in the $\infty $-category $\operatorname{\mathcal{D}}$. Set $F_0 = F|_{\operatorname{\mathcal{E}}}$ and $F_1 = F|_{ \overline{\operatorname{\mathcal{E}}}_{ {\bf 1} }}$. Applying Proposition 7.3.1.18, we deduce that the natural transformation $F(h): F_0 \rightarrow F_1 \circ \mathrm{Rf}$ exhibits the functor $F_1$ as a left Kan extension of $F_0$ along $\mathrm{Rf}$. By virtue of Example 7.4.5.9, the natural transformation $h$ exhibits $\mathrm{Rf}$ as a covariant transport functor for the cocartesian fibration
Applying Corollary 7.3.2.14, we conclude that the functor $F$ is left Kan extended from $\operatorname{\mathcal{E}}$. $\square$
To prove Proposition 7.4.5.1, we need to show that there is a good supply of cocartesian fibrations which satisfy the hypotheses of Theorem 7.4.5.11.
Proposition 7.4.5.16. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a cocartesian fibration of simplicial sets and let ${\bf 1}$ denote the cone point of $\operatorname{\mathcal{C}}^{\triangleright }$. Then there exists a pullback diagram where $\overline{U}$ is a cocartesian fibration and a covariant refraction diagram $\mathrm{Rf}: \operatorname{\mathcal{E}}\rightarrow \overline{\operatorname{\mathcal{E}}}_{ {\bf 1} }$ which exhibits $\overline{\operatorname{\mathcal{E}}}_{ {\bf 1} }$ as a localization of $\operatorname{\mathcal{E}}$ with respect to the collection of all $U$-cocartesian edges of $\operatorname{\mathcal{E}}$.
Proof. Let $W$ be the collection of all $U$-cocartesian edges of $\operatorname{\mathcal{E}}$. Applying Proposition 6.3.2.1, we deduce that there exists an $\infty $-category $\operatorname{\mathcal{E}}[W^{-1}]$ and a diagram $\mathrm{Rf}: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{E}}[W^{-1}]$ which exhibits $\operatorname{\mathcal{E}}[W^{-1}]$ as a localization of $\operatorname{\mathcal{E}}$ with respect to $W$. In particular, the diagram $\mathrm{Rf}$ carries each $U$-cocartesian edge of $\operatorname{\mathcal{E}}$ to an isomorphism in $\operatorname{\mathcal{E}}[W^{-1}]$. Let $\overline{\operatorname{\mathcal{E}}}$ denote the relative join $\operatorname{\mathcal{E}}\star _{ \operatorname{\mathcal{E}}[W^{-1}] } \operatorname{\mathcal{E}}[W^{-1}]$ (Construction 5.2.3.1). Applying Lemma 5.2.3.17 to the commutative diagram
we deduce that vertical maps induce a cocartesian fibration
By construction, we have a pullback diagram of simplicial sets
and the fiber of $\overline{U}$ over the cone point ${\bf 1} \in \operatorname{\mathcal{C}}^{\triangleright }$ can be identified with the $\infty $-category $\operatorname{\mathcal{E}}[W^{-1}]$. Moreover, $\mathrm{Rf}$ induces a morphism of simplicial sets
for which $H|_{ \{ 0\} \times \operatorname{\mathcal{E}}}$ is the inclusion map $\operatorname{\mathcal{E}}\hookrightarrow \overline{\operatorname{\mathcal{E}}}$, and $H|_{ \{ 1\} \times \operatorname{\mathcal{E}}}$ is the diagram $\mathrm{Rf}: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{E}}[W^{-1}]$. For every vertex $X \in \operatorname{\mathcal{E}}$, the criterion of Lemma 5.2.3.17 guarantees that $H|_{ \Delta ^1 \times \{ X\} }$ is a $\overline{U}$-cocartesian edge of $\overline{\operatorname{\mathcal{E}}}$, so that $H$ exhibits $\mathrm{Rf}: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{E}}[W^{-1}]$ as a covariant refraction diagram. $\square$
Remark 7.4.5.17. Let $\lambda $ be an uncountable cardinal and let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a cocartesian fibration of simplicial sets which is essentially $\lambda $-small. Let $\kappa = \mathrm{cf}(\lambda )$ be the cofinality of $\lambda $. If $\operatorname{\mathcal{C}}$ is $\kappa $-small, then the simplicial set $\operatorname{\mathcal{E}}$ is essentially $\lambda $-small (Proposition 4.7.9.10), so any localization of $\operatorname{\mathcal{E}}$ is also essentially $\lambda $-small (Variant 6.3.2.6). It follows that any cocartesian fibration $\overline{U}: \overline{\operatorname{\mathcal{E}}} \rightarrow \operatorname{\mathcal{C}}^{\triangleright }$ satisfying the requirements of Proposition 7.4.5.16 is also essentially $\lambda $-small.
Proposition 7.4.5.1 is a special case of the following:
Proposition 7.4.5.18. Let $\lambda $ be an uncountable cardinal, and let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{QC}}^{< \lambda }$ be the covariant transport representation of a cocartesian fibration $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$. Assume that $\operatorname{\mathcal{C}}$ is $\kappa $-small, where $\kappa = \mathrm{cf}(\lambda )$ is the cofinality of $\lambda $. Let $W$ be the collection of all $U$-cocartesian edges $\operatorname{\mathcal{E}}$. Then the $\infty $-category $\operatorname{\mathcal{E}}[W^{-1}]$ is a colimit of $\mathscr {F}$ in the $\infty $-category $\operatorname{\mathcal{QC}}^{< \lambda }$. Moreover, the colimit of $\mathscr {F}$ is preserved by the inclusion functors $\operatorname{\mathcal{QC}}^{< \lambda } \hookrightarrow \operatorname{\mathcal{QC}}^{< \mu }$ for $\mu \geq \lambda $.
Proof. By virtue of Proposition 7.4.5.16, there exists a pullback diagram
where $\overline{U}$ is a cocartesian fibration, and a covariant refraction diagram $\mathrm{Rf}: \operatorname{\mathcal{E}}\rightarrow \overline{\operatorname{\mathcal{E}}}_{ {\bf 1} }$ which exhibits $\overline{\operatorname{\mathcal{E}}}_{ {\bf 1} }$ as a localization of $\operatorname{\mathcal{E}}$ with respect to $W$. It follows from Remark 7.4.5.17 that $\overline{U}$ is essentially $\lambda $-small. Using Corollary 5.6.5.13, we can extend $\mathscr {F}$ to a diagram $\overline{\mathscr {F}}: \operatorname{\mathcal{C}}^{\triangleright } \rightarrow \operatorname{\mathcal{QC}}^{< \lambda }$ which is a covariant transport representation for $\lambda $. It follows from Theorem 7.4.5.11 that $\overline{\mathscr {F}}$ is a colimit diagram in $\operatorname{\mathcal{QC}}^{< \lambda }$ (and that it remains a colimit diagram in $\operatorname{\mathcal{QC}}^{< \mu }$ for $\mu \geq \lambda $). $\square$
Warning 7.4.5.19 (Fake Colimits). In the formulation of Proposition 7.4.5.18, the assumption that $\operatorname{\mathcal{C}}$ is $\kappa $-small cannot be omitted. If $\operatorname{\mathcal{C}}$ is “too large” in comparison with $\lambda $, then it is possible to have a colimit diagram $\overline{\mathscr {F}}: \operatorname{\mathcal{C}}^{\triangleleft } \rightarrow \operatorname{\mathcal{QC}}^{< \lambda }$ which does not satisfy condition $(\ast )$ of Theorem 7.4.5.11 (see Warning 7.4.3.9). In this case, $\overline{\mathscr {F}}$ does not remain a colimit diagram in $\operatorname{\mathcal{QC}}^{< \mu }$ for $\mu \gg \lambda $.
Corollary 7.4.5.20. Let $\lambda $ be an uncountable cardinal and let $\kappa = \mathrm{cf}(\lambda )$ be the cofinality of $\lambda $. Then the $\infty $-category $\operatorname{\mathcal{QC}}^{< \lambda }$ admits $\kappa $-small colimits, which are preserved by the inclusion functors $\operatorname{\mathcal{QC}}^{< \lambda } \hookrightarrow \operatorname{\mathcal{QC}}^{< \mu }$ for $\mu \geq \lambda $.
Corollary 7.4.5.21. Let $\kappa $ be an uncountable regular cardinal. Then the $\infty $-category $\operatorname{\mathcal{QC}}^{< \kappa }$ admits $\kappa $-small colimits, which are preserved by the inclusion functors $\operatorname{\mathcal{QC}}^{< \kappa } \hookrightarrow \operatorname{\mathcal{QC}}^{< \lambda }$ for $\lambda \geq \kappa $.