Example 5.2.3.18. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty $-categories. Applying Lemma 5.2.3.17 to the diagram
we deduce that the projection map
is a cocartesian fibration. Moreover, a morphism $e: X \rightarrow Y$ of the $\infty $-category $\operatorname{\mathcal{C}}\star _{\operatorname{\mathcal{D}}} \operatorname{\mathcal{D}}$ is $\pi $-cocartesian if and only if it satisfies one of the following three conditions:
The objects $X$ and $Y$ belong to $\operatorname{\mathcal{C}}$ and $e$ is an isomorphism in the $\infty $-category $\operatorname{\mathcal{C}}$.
The objects $X$ and $Y$ belong to $\operatorname{\mathcal{D}}$ and $e$ is an isomorphism in the $\infty $-category $\operatorname{\mathcal{D}}$.
The object $X$ belongs to $\operatorname{\mathcal{C}}$, the object $Y$ belongs to $\operatorname{\mathcal{D}}$, and $e$ corresponds to an isomorphism $e_0: F(X) \rightarrow Y$ in the $\infty $-category $\operatorname{\mathcal{D}}$ (under the identification of Remark 5.2.3.14).