Lemma 5.2.2.13. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a cocartesian fibration of simplicial sets, let $K$ be a simplicial set, and suppose we are given a lifting problem
Then:
- $(1)$
The lifting problem (5.13) admits a solution $H: \Delta ^1 \times K \rightarrow \operatorname{\mathcal{E}}$ which is a $U$-cocartesian lift of $\overline{H}$.
- $(2)$
Let $F$ be any object of the $\infty $-category $\operatorname{Fun}_{ / \operatorname{\mathcal{C}}}( \{ 1\} \times K, \operatorname{\mathcal{E}})$. Then $F$ is isomorphic to $H|_{ \{ 1\} \times K}$ (as an object of $\operatorname{Fun}_{/\operatorname{\mathcal{C}}}( \{ 1\} \times K, \operatorname{\mathcal{E}})$) if and only if $F = H'|_{ \{ 1\} \times K }$, where $H'$ is another $U$-cocartesian lift of $\overline{H}$ which solves the lifting problem (5.13).