Remark 5.2.2.14 (Functoriality). Suppose we are given a commutative diagram of simplicial sets
where $U$ and $U'$ are cocartesian fibrations and $T$ carries $U$-cocartesian edges of $\operatorname{\mathcal{E}}$ to $U'$-cocartesian edges of $\operatorname{\mathcal{E}}'$. Let $f: C \rightarrow D$ be an edge of $\cal $, and let $F: \operatorname{\mathcal{E}}_{C} \rightarrow \operatorname{\mathcal{E}}_{D}$ and $F': \operatorname{\mathcal{E}}'_{C} \rightarrow \operatorname{\mathcal{E}}'_{D}$ be a given by covariant transport along $f$. Then the diagram of $\infty $-categories
commutes up to isomorphism. To prove this, choose diagrams $\widetilde{F}: \Delta ^1 \times \operatorname{\mathcal{E}}_{C} \rightarrow \operatorname{\mathcal{E}}$ and $\widetilde{F}': \Delta ^1 \times \operatorname{\mathcal{E}}'_{C} \rightarrow \operatorname{\mathcal{E}}'$ which exhibit $F$ and $F'$ as given by covariant transport along $F$. Then the morphisms
are $U'$-cocartesian lifts of the map $\Delta ^1 \times \operatorname{\mathcal{E}}_{C} \rightarrow \Delta ^1 \xrightarrow {f} \operatorname{\mathcal{C}}$ which coincide when restricted to $\{ 0\} \times \operatorname{\mathcal{E}}_{C}$, and are therefore isomorphic when restricted to $\{ 1\} \times \operatorname{\mathcal{E}}_{C}$ (Lemma 5.2.2.13).