Exercise 6.3.1.11. Let $\operatorname{\mathcal{C}}$ be a simplicial set, let $W$ be a collection of edges of $\operatorname{\mathcal{C}}$, and let $F,F': \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a pair of diagrams taking values in an $\infty $-category $\operatorname{\mathcal{D}}$. Suppose that $F$ and $F'$ are isomorphic when viewed as objects of the $\infty $-category $\operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})$. Show that $F$ exhibits $\operatorname{\mathcal{D}}$ as a localization of $\operatorname{\mathcal{C}}$ with respect to $W$ if and only if $F'$ exhibits $\operatorname{\mathcal{D}}$ as a localization of $\operatorname{\mathcal{C}}$ with respect to $W$.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$