Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 7.4.5.2. Let $\operatorname{\mathcal{C}}$ be a small simplicial set, let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{QC}}$ be a diagram, let $U: \int _{\operatorname{\mathcal{C}}} \mathscr {F} \rightarrow \operatorname{\mathcal{C}}$ denote the projection map, and let $W$ be the collection of all $U$-cocartesian morphisms of $\int _{\operatorname{\mathcal{C}}} \mathscr {F}$. Then the localization $( \int _{\operatorname{\mathcal{C}}} \mathscr {F})[W^{-1} ]$ is a colimit of the diagram $\mathscr {F}$ in the $\infty $-category $\operatorname{\mathcal{QC}}$.

Proof. Apply Proposition 7.4.5.1 in the case $\operatorname{\mathcal{E}}= \int _{\operatorname{\mathcal{C}}} \mathscr {F}$. $\square$