Proposition 7.4.4.1. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a cocartesian fibration of small simplicial sets and let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{QC}}$ be a covariant transport representation for $U$. Then the diagram $\mathscr {F}$ has a limit in the $\infty $-category $\operatorname{\mathcal{QC}}$, given by the $\infty $-category $\operatorname{Fun}_{ / \operatorname{\mathcal{C}}}^{\operatorname{CCart}}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{E}})$ of cocartesian sections of $U$.
7.4.4 Limits of $\infty $-Categories
Let $\operatorname{\mathcal{QC}}$ denote the $\infty $-category of (small) $\infty $-categories (Construction 5.5.4.1). Our goal in this section is to show that the $\infty $-category $\operatorname{\mathcal{QC}}$ admits small limits (Corollary 7.4.4.3). Recall that, if $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ is a cocartesian fibration of simplicial sets, then $\operatorname{Fun}_{ / \operatorname{\mathcal{C}}}^{\operatorname{CCart}}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{E}})$ denotes the full subcategory of $\operatorname{Fun}_{ / \operatorname{\mathcal{C}}}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{E}})$ spanned by those sections of $U$ which carry each edge of $\operatorname{\mathcal{C}}$ to a $U$-cocartesian edge of $\operatorname{\mathcal{E}}$ (Notation 5.3.1.10). We can state a preliminary version of our main result as follows:
Corollary 7.4.4.2. Let $\operatorname{\mathcal{C}}$ be a small simplicial set and let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{QC}}$ be a diagram in the $\infty $-category $\operatorname{\mathcal{QC}}$. Then the $\infty $-category of cocartesian sections $\operatorname{Fun}_{ /\operatorname{\mathcal{C}}}^{\operatorname{CCart}}( \operatorname{\mathcal{C}}, \int _{\operatorname{\mathcal{C}}} \mathscr {F} )$ is a limit of the diagram $\mathscr {F}$.
Proof. Apply Proposition 7.4.4.1 to the cocartesian fibration $U: \int _{\operatorname{\mathcal{C}}} \mathscr {F} \rightarrow \operatorname{\mathcal{C}}$. $\square$
Corollary 7.4.4.3. The $\infty $-category $\operatorname{\mathcal{QC}}$ admits small limits.
Remark 7.4.4.4. Let $\operatorname{\mathcal{C}}$ be a small simplicial set, let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{QC}}$ be a diagram, and let $\varprojlim (\mathscr {F} )$ denote its limit (formed in the $\infty $-category $\operatorname{\mathcal{QC}}$). Assume that, for each vertex $C \in \operatorname{\mathcal{C}}$, the $\infty $-category $\mathscr {F}(C)$ is a Kan complex. Then $\varprojlim (\mathscr {F} )$ is also a Kan complex, which can be regarded as a limit of $\mathscr {F}$ in the subcategory $\operatorname{\mathcal{S}}\subset \operatorname{\mathcal{QC}}$. In particular, the inclusion functor $\operatorname{\mathcal{S}}\hookrightarrow \operatorname{\mathcal{QC}}$ preserves small limits. This is a special case of Variant 7.1.4.25, since $\operatorname{\mathcal{S}}$ is a reflective subcategory of $\operatorname{\mathcal{QC}}$ (Example 6.2.2.6). However, it can also be deduced directly from Corollary 7.4.4.2: the assumption that each $\mathscr {F}(C)$ is a Kan complex guarantees that the projection map $U: \int _{\operatorname{\mathcal{C}}} \mathscr {F} \rightarrow \operatorname{\mathcal{C}}$ is a left fibration (Example 5.6.2.9), so that $\operatorname{Fun}^{\operatorname{CCart}}_{ / \operatorname{\mathcal{C}}}( \operatorname{\mathcal{C}}, \int _{\operatorname{\mathcal{C}}} \mathscr {F} ) = \operatorname{Fun}_{ / \operatorname{\mathcal{C}}}( \operatorname{\mathcal{C}}, \int _{\operatorname{\mathcal{C}}} \mathscr {F} )$ is a Kan complex by virtue of Corollary 4.4.2.5.
Remark 7.4.4.5. Let $n \geq -2$ be an integer and let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{QC}}$ be a diagram having the property that, for each vertex $C \in \operatorname{\mathcal{C}}$, the $\infty $-category $\mathscr {F}(C)$ is locally $n$-truncated. Then the limit $\varprojlim (\mathscr {F} )$ is also locally $n$-truncated. This is a special case of Variant 7.1.4.25, since the locally $n$-truncated $\infty $-categories span a reflective subcategory of $\operatorname{\mathcal{QC}}$ (Variant 6.2.2.8). Alternatively, it can be deduced from the description of $\varprojlim (\mathscr {F} )$ supplied by Proposition 7.4.4.1. If $\mathscr {F}$ is the covariant transport representation of a cocartesian fibration $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$, then $U$ is essentially $(n+1)$-categorical (Variant 5.1.5.17). It follows from Corollary 4.8.6.22 that the $\infty $-category of sections $\operatorname{Fun}_{ / \operatorname{\mathcal{C}}}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{E}})$ is locally $n$-truncated, so that the full subcategory $\operatorname{Fun}^{\operatorname{CCart}}_{/\operatorname{\mathcal{C}}}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{E}})$ is also locally $n$-truncated.
We will deduce Proposition 7.4.4.1 from a more precise result, which characterizes limit diagrams in the $\infty $-category $\operatorname{\mathcal{QC}}$.
Theorem 7.4.4.6 (Diffraction Criterion). Let $\kappa $ be an uncountable cardinal and suppose we are given a pullback diagram of simplicial sets where $U$ and $\overline{U}$ are essentially $\kappa $-small cocartesian fibrations. The following conditions are equivalent:
The restriction map
is an equivalence of $\infty $-categories.
The covariant transport representation
of Notation 5.6.5.16 is a limit diagram in the $\infty $-category $\operatorname{\mathcal{QC}}^{< \kappa }$.
Remark 7.4.4.7. In the situation of Theorem 7.4.4.6, condition $(1)$ does not depend on the cardinal $\kappa $. It follows that if a diagram $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{QC}}^{< \kappa }$ admits a limit in the $\infty $-category $\operatorname{\mathcal{QC}}^{< \kappa }$, then that limit is preserved by the inclusion functors $\operatorname{\mathcal{QC}}^{< \kappa } \hookrightarrow \operatorname{\mathcal{QC}}^{< \lambda }$ for $\lambda \geq \kappa $.
Remark 7.4.4.8. In the situation of Theorem 7.4.4.6, the restriction map $\operatorname{Fun}_{ / \operatorname{\mathcal{C}}^{\triangleleft } }^{\operatorname{CCart}}( \operatorname{\mathcal{C}}^{\triangleleft }, \overline{\operatorname{\mathcal{E}}} ) \rightarrow \operatorname{Fun}_{ / \operatorname{\mathcal{C}}}^{\operatorname{CCart}}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{E}})$ is automatically an isofibration of $\infty $-categories (Remark 5.3.1.18). Using Proposition 4.5.5.20, we see that condition $(1)$ of Theorem 7.4.4.6 is equivalent to the following a priori stronger condition:
The restriction map
is a trivial Kan fibration of simplicial sets.
Proof of Theorem 7.4.4.6. Choose an uncountable cardinal $\lambda $ of exponential cofinality $\geq \kappa $, so that the $\infty $-category $\operatorname{\mathcal{QC}}^{< \kappa }$ is locally $\lambda $-small (Remark 5.5.4.14). For every object $\operatorname{\mathcal{K}}\in \operatorname{\mathcal{QC}}^{< \kappa }$, let $h^{\operatorname{\mathcal{K}}}: \operatorname{\mathcal{QC}}^{< \kappa } \rightarrow \operatorname{\mathcal{S}}^{< \lambda }$ be the functor corepresented by $\operatorname{\mathcal{K}}$. By virtue of Proposition 5.6.6.17, we may assume that $h^{\operatorname{\mathcal{K}}}$ is obtained from the homotopy coherent nerve of the simplicial functor
By virtue of Proposition 7.4.1.18, it will suffice to show that the following conditions are equivalent:
- $(1_{\operatorname{\mathcal{K}}} )$
The restriction map
\[ \operatorname{Fun}( \operatorname{\mathcal{K}}, \operatorname{Fun}_{ / \operatorname{\mathcal{C}}^{\triangleleft } }^{\operatorname{CCart}}( \operatorname{\mathcal{C}}^{\triangleleft }, \overline{\operatorname{\mathcal{E}}} ) )^{\simeq } \rightarrow \operatorname{Fun}(\operatorname{\mathcal{K}}, \operatorname{Fun}_{ / \operatorname{\mathcal{C}}}^{\operatorname{CCart}}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{E}}))^{\simeq } \]is a homotopy equivalence of Kan complexes.
- $(2_{\operatorname{\mathcal{K}}} )$
The composition $h^{\operatorname{\mathcal{K}}} \circ \operatorname{Tr}_{ \overline{\operatorname{\mathcal{E}}} / \operatorname{\mathcal{C}}^{\triangleleft } }$ is a limit diagram in the $\infty $-category $\operatorname{\mathcal{S}}^{< \lambda }$.
Using Example 5.6.5.9, we can replace $U$ by the projection map
and thereby reduce to proving the equivalence $(1_{\operatorname{\mathcal{K}}} ) \Leftrightarrow ( 2_{\operatorname{\mathcal{K}}} )$ in the special case where $\operatorname{\mathcal{K}}= \Delta ^{0}$. In this case, the desired result follows by applying Proposition 7.4.1.16 to the underlying left fibration of $U$ (see Example 5.6.5.8). $\square$
It will be convenient to reformulate condition $(1)$ of Theorem 7.4.4.6.
Construction 7.4.4.9 (Covariant Diffraction). Suppose we are given a pullback diagram of simplicial sets where $U$ and $\overline{U}$ are cocartesian fibrations. Let $\overline{\operatorname{\mathcal{E}}}_{ {\bf 0} }$ denote the fiber of $\overline{U}$ over the cone point ${\bf 0} \in \operatorname{\mathcal{C}}^{\triangleleft }$. We then have restriction maps where $\operatorname{ev}$ is a trivial Kan fibration (Corollary 5.3.1.23). Composing $\theta $ with a section of $\operatorname{ev}$, we obtain a functor of $\infty $-categories $\mathrm{Df}: \overline{\operatorname{\mathcal{E}}}_{ {\bf 0} } \rightarrow \operatorname{Fun}_{/ \operatorname{\mathcal{C}}}^{\operatorname{CCart}}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{E}})$ which is well-defined up to isomorphism. We will refer to $\mathrm{Df}$ as the covariant diffraction functor associated to the cocartesian fibration $\overline{U}$.
Remark 7.4.4.10. In the situation of Construction 7.4.4.9, let $C \in \operatorname{\mathcal{C}}$ be a vertex and let $\operatorname{ev}_{C}: \operatorname{Fun}_{/ \operatorname{\mathcal{C}}}^{\operatorname{CCart}}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{E}}) \rightarrow \operatorname{\mathcal{E}}_{C}$ be the evaluation functor, given on objects by $\operatorname{ev}_{C}(F) = F(C)$. Then the composition is given by covariant transport along the unique edge ${\bf 0} \rightarrow C$ of $\operatorname{\mathcal{C}}^{\triangleleft }$.
Remark 7.4.4.11. Suppose we are given a pullback diagram of small simplicial sets Then the covariant diffraction functor $\mathrm{Df}: \overline{\operatorname{\mathcal{E}}}_{ {\bf 0} } \rightarrow \operatorname{Fun}_{/ \operatorname{\mathcal{C}}}^{\operatorname{CCart}}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{E}})$ of Construction 7.4.4.9 is an equivalence of $\infty $-categories if the restriction functor is an equivalence of $\infty $-categories.
We now show that there exists a good supply of cocartesian fibrations which satisfy the hypotheses of Theorem 7.4.4.6.
Proposition 7.4.4.12. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a cocartesian fibration of simplicial sets. Then there exists a pullback diagram where $\overline{U}$ is a cocartesian fibration and the restriction map is an equivalence of $\infty $-categories.
Proof. Let $\operatorname{ev}: \operatorname{Fun}_{ / \operatorname{\mathcal{C}}}^{\operatorname{CCart}}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{E}}) \times \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{E}}$ denote the evaluation morphism (given on vertices by the formula $\operatorname{ev}( F, C) = F(C)$), and let
denote the relative join of Construction 5.2.3.1. Note that we have a canonical map
Let $\pi : \operatorname{Fun}_{ / \operatorname{\mathcal{C}}}^{\operatorname{CCart}}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{E}}) \times \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{C}}$ be given by projection onto the second factor. Note that $\pi $ is a cocartesian fibration, and that an edge of the product $\operatorname{Fun}_{ / \operatorname{\mathcal{C}}}^{\operatorname{CCart}}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{E}}) \times \operatorname{\mathcal{C}}$ is $\pi $-cocartesian if and only if its image in $\operatorname{Fun}_{ / \operatorname{\mathcal{C}}}^{\operatorname{CCart}}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{E}})$ is an isomorphism. It follows that the $\operatorname{ev}$ carries $\pi $-cocartesian edges of $\operatorname{Fun}_{ / \operatorname{\mathcal{C}}}^{\operatorname{CCart}}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{E}}) \times \operatorname{\mathcal{C}}$ to $U$-cocartesian edges of $\operatorname{\mathcal{E}}$. Applying Lemma 5.2.3.17, we deduce that $U'$ is a cocartesian fibration. By construction, we can identify $\operatorname{\mathcal{E}}$ with the inverse image of $\{ 1\} \times \operatorname{\mathcal{C}}$ under $U'$.
Let $\operatorname{\mathcal{E}}''$ denote the pushout
Amalgamating $U'$ with the projection map $\operatorname{Fun}_{ / \operatorname{\mathcal{C}}}^{\operatorname{CCart}}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{E}}) \times \operatorname{\mathcal{C}}^{\triangleleft } \rightarrow \operatorname{\mathcal{C}}^{\triangleleft }$, we obtain a morphism of simplicial sets $U'': \operatorname{\mathcal{E}}'' \rightarrow K$, where $K$ denotes the pushout $( \{ 0 \} \times \operatorname{\mathcal{C}})^{\triangleleft } {\coprod }_{ ( \{ 0\} \times \operatorname{\mathcal{C}}) } ( \Delta ^1 \times \operatorname{\mathcal{C}})$. It follows from Proposition 5.1.4.8 that $U''$ is also a cocartesian fibration.
Let us abuse notation by identifying $K$ with its image in the simplicial set $( \Delta ^1 \times \operatorname{\mathcal{C}})^{\triangleleft }$. Since the inclusion map $\{ 0\} \times \operatorname{\mathcal{C}}\hookrightarrow \Delta ^1 \times \operatorname{\mathcal{C}}$ is left anodyne (Proposition 4.2.5.3), the inclusion $K \hookrightarrow (\Delta ^1 \times \operatorname{\mathcal{C}})^{\triangleleft }$ is inner anodyne (Example 4.3.6.5). Applying Proposition 5.6.7.2, we can write $U''$ as the pullback of a cocartesian fibration $U''': \operatorname{\mathcal{E}}''' \rightarrow (\Delta ^1 \times \operatorname{\mathcal{C}})^{\triangleleft }$. We then have a commutative diagram of simplicial sets
where each square is a pullback and each vertical map is a cocartesian fibration. Let $\overline{\operatorname{\mathcal{E}}}$ denote the pullback $( \{ 1\} \times \operatorname{\mathcal{C}})^{\triangleleft } \times _{ (\Delta ^1 \times \operatorname{\mathcal{C}})^{\triangleleft } } \operatorname{\mathcal{E}}'''$, so that $U'''$ restricts to a cocartesian fibration $\overline{U}: \overline{\operatorname{\mathcal{E}}} \rightarrow ( \{ 1\} \times \operatorname{\mathcal{C}})^{\triangleleft }$. We will complete the proof by showing that the commutative diagram
satisfies the requirements of Proposition 7.4.4.12.
For every simplicial subset $A \subseteq (\Delta ^1 \times \operatorname{\mathcal{C}})^{\triangleleft }$, let $\operatorname{\mathcal{D}}(A)$ denote the $\infty $-category
Let ${\bf 0}$ denote the cone point of $(\Delta ^1 \times \operatorname{\mathcal{C}})^{\triangleleft }$. Note that we have a commutative diagram of restriction functors
We wish to show that $\alpha $ is an equivalence of $\infty $-categories. Since the inclusion $K \hookrightarrow ( \Delta ^1 \times \operatorname{\mathcal{C}})^{\triangleleft }$ is inner anodyne (as noted above) and the inclusion $( \{ 1\} \times \operatorname{\mathcal{C}})^{\triangleleft } \hookrightarrow ( \Delta ^1 \times \operatorname{\mathcal{C}})^{\triangleleft }$ is left anodyne (Lemma 4.3.7.8), the morphisms $\alpha '$ and $\beta $ are trivial Kan fibrations (Proposition 5.3.1.21). It will therefore suffice to show that $\beta '$ is an equivalence of $\infty $-categories.
Amalgamating the map
with the identity on $\operatorname{Fun}_{ / \operatorname{\mathcal{C}}}^{\operatorname{CCart}}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{E}}) \times \operatorname{\mathcal{C}}^{\triangleleft }$, we obtain a morphism of simplicial sets $F: \operatorname{Fun}_{ / \operatorname{\mathcal{C}}}^{\operatorname{CCart}}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{E}}) \times K \rightarrow \operatorname{\mathcal{E}}''$. If $e$ is an edge of the product $\operatorname{Fun}_{ / \operatorname{\mathcal{C}}}^{\operatorname{CCart}}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{E}}) \times K$ whose image in $\operatorname{Fun}_{ / \operatorname{\mathcal{C}}}^{\operatorname{CCart}}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{E}})$ is an isomorphism, then $F(e)$ is a $U''$-cocartesian edge of $\operatorname{\mathcal{E}}''$. We can therefore identify $F$ with a morphism of simplicial sets $f: \operatorname{Fun}_{ / \operatorname{\mathcal{C}}}^{\operatorname{CCart}}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{E}}) \rightarrow \operatorname{\mathcal{D}}(K)$. Unwinding the definitions, we see that $\beta ' \circ f$ is an isomorphism of simplicial sets. Consequently, to show that $\beta '$ is an equivalence of $\infty $-categories, it will suffice to show that $f$ is an equivalence of $\infty $-categories. Similarly, the composite map $\gamma \circ f$ is an isomorphism, so we are reduced to proving that $\gamma $ is an equivalence of $\infty $-categories. Since $\beta $ is a trivial Kan fibration, this is equivalent to the assertion that $\gamma \circ \beta $ is an equivalence of $\infty $-categories, which is a special case of Corollary 5.3.1.23. $\square$
Remark 7.4.4.13. Let $\lambda $ be an uncountable regular cardinal and let $\kappa = \mathrm{ecf}(\lambda )$ denote its exponential cofinality. In the situation of Proposition 7.4.4.12, suppose that the cocartesian fibration $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ is essentially $\lambda $-small and that the simplicial set $\operatorname{\mathcal{C}}$ is $\kappa $-small. Then fiber of $\overline{U}$ over the cone point of $\operatorname{\mathcal{C}}^{\triangleleft }$ is equivalent to the $\infty $-category $\operatorname{Fun}_{ / \operatorname{\mathcal{C}}}^{\operatorname{CCart}}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{E}})$, which is also essentially $\lambda $-small (Variant 4.7.9.11). It follows that the cocartesian fibration $\overline{U}$ is essentially $\lambda $-small.
Proof of Proposition 7.4.4.1. Let $\operatorname{\mathcal{C}}$ be a small simplicial set and let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{QC}}$ be the covariant transport representation for a cocartesian fibration $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$. Using Proposition 7.4.4.12, we can choose a pullback diagram
where $\overline{U}$ is a cocartesian fibration and the restriction map
is an equivalence of $\infty $-categories. It follows from Remark 7.4.4.13 that the cocartesian fibration $\overline{U}$ is essentially small, so that $\mathscr {F}$ admits an extension $\overline{\mathscr {F}}: \operatorname{\mathcal{C}}^{\triangleleft } \rightarrow \operatorname{\mathcal{QC}}$ which is a covariant transport representation for $\overline{U}$ (Corollary 5.6.5.13). Applying Theorem 7.4.4.6, we see that $\overline{\mathscr {F}}$ is a limit diagram in $\operatorname{\mathcal{QC}}$. In particular, it carries the cone point of $\operatorname{\mathcal{C}}^{\triangleleft }$ to an $\infty $-category $\operatorname{\mathcal{D}}$ which is a limit of the diagram $\mathscr {F}$. By virtue of Remark 7.4.4.11, the $\infty $-category $\operatorname{\mathcal{D}}$ is equivalent to the $\infty $-category $\operatorname{Fun}_{ / \operatorname{\mathcal{C}}}^{\operatorname{CCart}}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{E}})$ of cocartesian sections of $U$. $\square$
Variant 7.4.4.14. Let $\lambda $ be an uncountable cardinal of exponential cofinality $\kappa = \mathrm{ecf}(\lambda )$ and suppose we are given a diagram $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{QC}}^{< \lambda }$, where $\operatorname{\mathcal{C}}$ is a $\kappa $-small simplicial set. It follows from the proof of Proposition 7.4.4.1 (together with Remark 7.4.4.13) that the diagram $\mathscr {F}$ admits a limit $\varprojlim (\mathscr {F} )$, which can be identified with $\operatorname{Fun}^{\operatorname{CCart}}_{ /\operatorname{\mathcal{C}}}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{E}})$ for any cocartesian fibration $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ with covariant transport representation $\mathscr {F}$ (for example. we can take $\operatorname{\mathcal{E}}= \int _{\operatorname{\mathcal{C}}} \mathscr {F}$). In particular, the $\infty $-category $\operatorname{\mathcal{QC}}^{< \lambda }$ admits $\kappa $-small limits, which are preserved by the inclusion functors $\operatorname{\mathcal{QC}}^{< \lambda } \hookrightarrow \operatorname{\mathcal{QC}}^{< \mu }$ for every $\mu \geq \lambda $.