Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 7.4.5.21. Let $\kappa $ be an uncountable regular cardinal. Then the $\infty $-category $\operatorname{\mathcal{QC}}^{< \kappa }$ admits $\kappa $-small colimits, which are preserved by the inclusion functors $\operatorname{\mathcal{QC}}^{< \kappa } \hookrightarrow \operatorname{\mathcal{QC}}^{< \lambda }$ for $\lambda \geq \kappa $.