Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

9.1.8 Approximation by Partially Ordered Sets

Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. It follows from Corollary 9.1.5.11 (and Example 9.1.1.2) that if there exists a directed partially ordered set $(A, \leq )$ and a right cofinal functor $\operatorname{N}_{\bullet }(A) \rightarrow \operatorname{\mathcal{C}}$, then $\operatorname{\mathcal{C}}$ is filtered. The goal of this section is to show that the converse is also true.

Theorem 9.1.8.1. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. Then $\operatorname{\mathcal{C}}$ is filtered if and only if there exists a directed partially ordered set $(A, \leq )$ and a right cofinal functor $\operatorname{N}_{\bullet }(A) \rightarrow \operatorname{\mathcal{C}}$.

We will deduce Theorem 9.1.8.1 from a more precise result (which applies also to $\kappa $-filtered $\infty $-categories, and allows us to control the size of the partially ordered set $A$) which we prove at the end of this section (Theorem 9.1.8.7). We begin with some preliminaries.

Lemma 9.1.8.2. Let $\kappa $ be an infinite cardinal and let $\operatorname{\mathcal{C}}$ be a $\kappa $-filtered $\infty $-category. Then there exists a trivial Kan fibration $\pi : \widetilde{\operatorname{\mathcal{C}}} \rightarrow \operatorname{\mathcal{C}}$, where $\widetilde{\operatorname{\mathcal{C}}}$ is an $\infty $-category having the following property:

$(\ast )$

For every $\kappa $-small simplicial subset $K \subseteq \widetilde{\operatorname{\mathcal{C}}}$, the inclusion map $K \hookrightarrow \widetilde{\operatorname{\mathcal{C}}}$ extends to a monomorphism $K^{\triangleright } \hookrightarrow \widetilde{\operatorname{\mathcal{C}}}$.

Proof. Let $J$ be a set of cardinality $\kappa $ and let $\operatorname{\mathcal{J}}$ be the corresponding indiscrete category (that is, the category having object set $\operatorname{Ob}(\operatorname{\mathcal{J}}) = J$ and $\operatorname{Hom}_{\operatorname{\mathcal{J}}}(j,j') = \ast $ for every pair of elements $j,j' \in J$). The nerve $\operatorname{N}_{\bullet }(\operatorname{\mathcal{J}})$ is a contractible Kan complex. Setting $\widetilde{\operatorname{\mathcal{C}}} = \operatorname{N}_{\bullet }(\operatorname{\mathcal{J}}) \times \operatorname{\mathcal{C}}$, it follows that the projection map $\pi : \widetilde{\operatorname{\mathcal{C}}} \rightarrow \operatorname{\mathcal{C}}$ is a trivial Kan fibration. We will complete the proof by showing that $\widetilde{\operatorname{\mathcal{C}}}$ satisfies condition $(\ast )$. Let $K$ be a $\kappa $-small simplicial subset of $\widetilde{\operatorname{\mathcal{C}}}$, so that the inclusion map $K \hookrightarrow \widetilde{\operatorname{\mathcal{C}}}$ can be identified with a pair of morphisms

\[ f: K \rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{J}}) \quad \quad g: K \rightarrow \operatorname{\mathcal{C}}. \]

Since $J$ has cardinality $\kappa $, we can choose an element $j \in J$ which is not of the form $f(x)$ for any vertex $x \in K$. It follows that $f$ admits a unique extension $\overline{f}: K^{\triangleright } \rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{J}})$ which carries the cone point of $K^{\triangleright }$ to the element $j \in J$. Our assumption that $\operatorname{\mathcal{C}}$ is $\kappa $-filtered guarantees that $g$ admits an extension $\overline{g}: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$. We complete the proof by observing that the pair $(\overline{f}, \overline{g} )$ determines a monomorphism of simplicial sets $K^{\triangleright } \rightarrow \widetilde{\operatorname{\mathcal{C}}}$. $\square$

Remark 9.1.8.3. In the situation of Lemma 9.1.8.2, if the $\infty $-category $\operatorname{\mathcal{C}}$ is $\lambda $-small for some cardinal $\lambda > \kappa $, then the $\infty $-category $\widetilde{\operatorname{\mathcal{C}}}$ constructed in the proof is also $\lambda $-small.

Lemma 9.1.8.4. Let $\kappa $ be a regular cardinal and let $\operatorname{\mathcal{C}}$ be a simplicial set which is a $\kappa $-filtered $\infty $-category which satisfies condition $(\ast )$ of Lemma 9.1.8.2. Then $\operatorname{\mathcal{C}}$ can be realized as the colimit of a diagram

\[ A \rightarrow \operatorname{Set_{\Delta }}\quad \quad (\alpha \in A) \mapsto X_{\alpha }, \]

where $(A, \leq )$ is a $\kappa $-directed partially ordered set and each $X_{\alpha }$ is a simplicial set of the form $K_{\alpha }^{\triangleright }$ for some $\kappa $-small simplicial set $K_{\alpha }$. Moreover, if $\operatorname{\mathcal{C}}$ is $\mu $-small for some regular cardinal $\lambda $ with $\kappa \trianglelefteq \lambda $, then we can arrange that $A$ is also $\lambda $-small.

Proof. Fix a regular cardinal $\lambda $ such that $\operatorname{\mathcal{C}}$ is $\lambda $-small. If $\kappa \trianglelefteq \lambda $, then we can choose a $\lambda $-small collection $\{ K_{\alpha } \} _{\alpha \in A}$ of $\kappa $-small simplicial subsets of $\operatorname{\mathcal{C}}$, such that every $\kappa $-small simplicial subset of $\operatorname{\mathcal{C}}$ is contained in some $K_{\alpha }$ (Lemma 9.1.7.18). Since $\operatorname{\mathcal{C}}$ satisfies condition $(\ast )$, each $K_{\alpha }$ is contained in a larger simplicial subset $X_{\alpha } \subseteq \operatorname{\mathcal{C}}$ which is isomorphic to the cone $K_{\alpha }^{\triangleright }$. We regard $A$ as a partially ordered set, where $\alpha \leq \beta $ if $X_{\alpha }$ is contained in $X_{\beta }$. Then $(A, \leq )$ is automatically $\kappa $-directed (Remark 9.1.7.19), and the colimit $\varinjlim _{\alpha \in A} X_{\alpha }$ identifies with the union $\bigcup _{\alpha } X_{\alpha } = \operatorname{\mathcal{C}}$. $\square$

Lemma 9.1.8.4 has the following homotopy-invariant consequence:

Proposition 9.1.8.5. Let $\kappa $ and $\lambda $ be regular cardinals satisfying $\kappa \triangleleft \lambda $, and let $\operatorname{\mathcal{C}}$ be an $\infty $-category which is $\kappa $-filtered and essentially $\lambda $-small. Then there exists a $\lambda $-small, $\kappa $-directed partially ordered set $A$ and a diagram

\[ \operatorname{N}_{\bullet }(A) \rightarrow \operatorname{\mathcal{QC}}_{< \lambda } \quad \quad (\alpha \in A) \mapsto \operatorname{\mathcal{E}}_{\alpha } \]

having colimit $\operatorname{\mathcal{C}}$ which satisfies the following condition:

$(\ast )$

For each $\alpha \in A$, there exists a $\kappa $-small simplicial set $K_{\alpha }$ and a categorical equivalence $K^{\triangleright }_{\alpha } \rightarrow \operatorname{\mathcal{E}}_{\alpha }$.

Remark 9.1.8.6. In the situation of Proposition 9.1.8.5, condition $(\ast )$ guarantees that each of the $\infty $-categories $\operatorname{\mathcal{E}}_{\alpha }$ has a final object (and is therefore $\mu $-filtered for any infinite cardinal $\mu $; see Example 9.1.1.6). Beware that these final objects need not be preserved by the transition maps $\operatorname{\mathcal{E}}_{\alpha } \rightarrow \operatorname{\mathcal{E}}_{\beta }$.

Proof of Proposition 9.1.8.5. Replacing $\operatorname{\mathcal{C}}$ by an equivalent $\infty $-category, we may assume that it is $\lambda $-small and satisfies condition $(\ast )$ of Lemma 9.1.8.2. Using Lemma 9.1.8.4, we can realize $\operatorname{\mathcal{C}}$ as the colimit of a diagram

\[ \mathscr {F}: A \rightarrow \operatorname{Set_{\Delta }}\quad \quad (\alpha \in A) \mapsto X_{\alpha }, \]

where each $X_{\alpha }$ has the form $K_{\alpha }^{\triangleright }$ for some $\kappa $-small simplicial set $K_{\alpha }$. Using Proposition 4.1.3.2, we can choose a levelwise categorical equivalence $\mathscr {F} \rightarrow \mathscr {F}'$ for some functor

\[ \mathscr {F}': A \rightarrow \operatorname{Set_{\Delta }}\quad \quad (\alpha \in A) \mapsto \operatorname{\mathcal{E}}_{\alpha } \]

carrying each $\alpha \in A$ to an $\infty $-category $\operatorname{\mathcal{E}}_{\alpha }$. By construction, each of the $\infty $-categories $\operatorname{\mathcal{E}}_{\alpha }$ essentially $\lambda $-small, so that $\mathscr {F}'$ determines a diagram $\operatorname{N}_{\bullet }(A) \rightarrow \operatorname{\mathcal{QC}}_{< \lambda }$. It follows from Corollary 9.1.6.3 that $\operatorname{\mathcal{C}}$ is a colimit of this diagram. $\square$

Theorem 9.1.8.1 is a consequence of the following more precise assertion:

Theorem 9.1.8.7. Let $\kappa $ and $\lambda $ be regular cardinals satisfying $\kappa \triangleleft \lambda $ and let $\operatorname{\mathcal{C}}$ be a $\lambda $-small, $\kappa $-filtered $\infty $-category. Then there exists a $\lambda $-small, $\kappa $-directed partially ordered set $A$ and a right cofinal functor $F: \operatorname{N}_{\bullet }(A) \rightarrow \operatorname{\mathcal{C}}$.

Proof. Using Proposition 9.1.8.5 (and Remark 9.1.8.6), we can choose a $\lambda $-small, $\kappa $-directed partially ordered set $(A, \leq )$ and a diagram

\[ \mathscr {F}: \operatorname{N}_{\bullet }(A) \rightarrow \operatorname{\mathcal{QC}}_{< \lambda } \quad \quad (\alpha \in A) \mapsto \operatorname{\mathcal{E}}_{\alpha } \]

having colimit $\operatorname{\mathcal{C}}$, where each $\operatorname{\mathcal{E}}_{\alpha }$ has a final object. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{N}_{\bullet }(A)$ be a cocartesian fibration with covariant transport representation $\mathscr {F}$ (for example, we can take $\operatorname{\mathcal{E}}$ to be the $\infty $-category of elements $\int _{\operatorname{\mathcal{C}}} \mathscr {F}$ of Definition 5.6.2.1) and let $W$ be the collection of all $U$-cocartesian morphisms of $\operatorname{\mathcal{E}}$. Since $\operatorname{\mathcal{C}}$ is a colimit of the diagram $\mathscr {F}$, there is a functor $G: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ which exhibits $\operatorname{\mathcal{C}}$ as a localization of $\operatorname{\mathcal{E}}$ with respect to $W$ (Proposition 7.4.5.20), and is therefore right cofinal (Proposition 7.2.1.10). Since each fiber of $U$ has a final object, the functor $U$ is a reflective localization (Corollary 7.1.5.22): that is, it has a (fully faithful) right adjoint $V: \operatorname{N}_{\bullet }(A) \rightarrow \operatorname{\mathcal{E}}$. The functor $V$ is also right cofinal (Corollary 7.2.3.7), so the composition $(G \circ V): \operatorname{N}_{\bullet }(A) \rightarrow \operatorname{\mathcal{C}}$ is right cofinal. $\square$

Corollary 9.1.8.8. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $\kappa $ be a regular cardinal. Then $\operatorname{\mathcal{C}}$ is $\kappa $-filtered if and only if there exists a $\kappa $-directed partially ordered set $(A, \leq )$ and a right cofinal functor $\operatorname{N}_{\bullet }(A) \rightarrow \operatorname{\mathcal{C}}$.

Corollary 9.1.8.9. Let $\operatorname{\mathcal{C}}$ be a filtered $\infty $-category having countably many simplices. Then there exists a right cofinal functor $F: \operatorname{N}_{\bullet }( \operatorname{\mathbf{Z}}_{\geq 0} ) \rightarrow \operatorname{\mathcal{C}}$. Here $\operatorname{\mathbf{Z}}_{\geq 0}$ denotes the set of non-negative integers, equipped with its usual ordering.

Proof. Using Theorem 9.1.8.7, we can reduce to the case where $\operatorname{\mathcal{C}}= \operatorname{N}_{\bullet }(A)$, where $(A, \leq )$ is a countable directed partially ordered set. In this case, we can identify a functor $F: \operatorname{N}_{\bullet }( \operatorname{\mathbf{Z}}_{\geq 0} ) \rightarrow \operatorname{\mathcal{C}}$ with a nondecreasing sequence $a_0 \leq a_1 \leq a_2 \leq \cdots $. To guarantee that $F$ is right cofinal, it suffices to choose a sequence with the property that each $a \in A$ satisfies $a \leq a_ n$ for $n \gg 0$ (see Theorem 7.2.3.1). $\square$

Beware that Theorem 9.1.8.7 is not true in the case $\kappa = \lambda $. Note that a partially ordered set $(A, \leq )$ which is both $\kappa $-small and $\kappa $-directed must have a largest element. Consequently, if there exists a right cofinal functor $\operatorname{N}_{\bullet }(A) \rightarrow \operatorname{\mathcal{C}}$, then the $\infty $-category $\operatorname{\mathcal{C}}$ must have a final object. The assumption that $\operatorname{\mathcal{C}}$ is $\kappa $-small and $\kappa $-filtered guarantees something slightly weaker:

Proposition 9.1.8.10. Let $\kappa $ be an infinite cardinal and let $\operatorname{\mathcal{C}}$ be an $\infty $-category which is $\kappa $-small. The following conditions are equivalent:

$(1)$

The $\infty $-category $\operatorname{\mathcal{C}}$ is $\kappa $-filtered.

$(2)$

The idempotent completion of $\operatorname{\mathcal{C}}$ has a final object.

$(3)$

There exists a right cofinal functor $\operatorname{N}_{\bullet }( \operatorname{Idem}) \rightarrow \operatorname{\mathcal{C}}$.

In particular, if $\operatorname{\mathcal{C}}$ is idempotent complete, then it is $\kappa $-filtered if and only if it has a final object.

Proof. The equivalence $(2) \Leftrightarrow (3)$ follows from Remark 8.5.6.19 (and does not require the assumption that $\operatorname{\mathcal{C}}$ is $\kappa $-small). Since the $\infty $-category $\operatorname{N}_{\bullet }( \operatorname{Idem})$ is $\kappa $-filtered (Example 9.1.1.8), the implication $(3) \Rightarrow (1)$ is a special case of Corollary 9.1.5.11. We will complete the proof by showing that $(1)$ implies $(2)$. If condition $(1)$ is satisfied, then there exists an object $X \in \operatorname{\mathcal{C}}$ and a natural transformation $\alpha : \operatorname{id}_{\operatorname{\mathcal{C}}} \rightarrow \underline{X}$ in the $\infty $-category $\operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{C}})$. Fix an uncountable cardinal $\lambda $ such that $\operatorname{\mathcal{C}}$ is locally $\lambda $-small, let $\widehat{\operatorname{\mathcal{C}}}$ denote the $\infty $-category $\operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{< \lambda } )$, and let $H: \operatorname{\mathcal{C}}\rightarrow \widehat{\operatorname{\mathcal{C}}}$ be a covariant Yoneda embedding for $\operatorname{\mathcal{C}}$. Since $H$ is dense (Theorem 8.4.2.1), every object $\mathscr {F} \in \widehat{\operatorname{\mathcal{C}}}$ can be recovered as the colimit of the diagram

\[ \operatorname{\mathcal{C}}\times _{ \widehat{\operatorname{\mathcal{C}}} } \widehat{\operatorname{\mathcal{C}}}_{ / \mathscr {F} } \rightarrow \operatorname{\mathcal{C}}\xrightarrow { H } \widehat{\operatorname{\mathcal{C}}}. \]

In particular, if $\mathscr {F}$ is a final object of $\widehat{\operatorname{\mathcal{C}}}$, then it is a colimit of the diagram $H$. It follows that there exists a morphism $i: \mathscr {F} \rightarrow H(X)$ in the $\infty $-category $\widehat{\operatorname{\mathcal{C}}}$ and a commutative diagram

\[ \xymatrix@R =50pt@C=50pt{ & \underline{\mathscr {F}} \ar [dr]^{\underline{i}} & \\ H \ar [rr]^{ H( \alpha ) } \ar [ur] & & \underline{ H(X) } } \]

in the $\infty $-category $\operatorname{Fun}(\operatorname{\mathcal{C}}, \widehat{\operatorname{\mathcal{C}}} )$. Since $\mathscr {F}$ is a final object of $\widehat{\operatorname{\mathcal{C}}}$, the morphism $i$ automatically has a left homotopy inverse (given by any morphism $r: H(X) \rightarrow \mathscr {F}$). In particular, $\mathscr {F}$ is a retract of $H(X)$, and can therefore be viewed as a final object in the idempotent completion of $\operatorname{\mathcal{C}}$ (see Proposition 8.5.5.5). $\square$

Corollary 9.1.8.11. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category which is finite when viewed as a simplicial set. Then $\operatorname{\mathcal{C}}$ is filtered if and only if it has a final object.

Proof. This follows from Proposition 9.1.8.10 (applied in the special case $\kappa = \aleph _0$), since the $\infty $-category $\operatorname{\mathcal{C}}$ is automatically idempotent complete (Example 8.5.4.5). $\square$