Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 9.1.1.10. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $\kappa $ be an infinite cardinal. The following conditions are equivalent:

$(1)$

The $\infty $-category $\operatorname{\mathcal{C}}$ is $\kappa $-filtered.

$(2)$

For every $\kappa $-small simplicial set $K$ and every diagram $f: K \rightarrow \operatorname{\mathcal{C}}$, the coslice $\infty $-category $\operatorname{\mathcal{C}}_{f/}$ is nonempty.

$(3)$

For every $\kappa $-small simplicial set $K$ and every diagram $f: K \rightarrow \operatorname{\mathcal{C}}$, the oriented fiber product $\{ f\} \operatorname{\vec{\times }}_{ \operatorname{Fun}(K,\operatorname{\mathcal{C}}) } \operatorname{\mathcal{C}}$ is nonempty.

$(4)$

For every $\kappa $-small simplicial set $K$ and every diagram $f: K \rightarrow \operatorname{\mathcal{C}}$, there exists a morphism $f \rightarrow f'$ in the $\infty $-category $\operatorname{Fun}(K,\operatorname{\mathcal{C}})$, where $f': K \rightarrow \operatorname{\mathcal{C}}$ is a constant diagram.

The equivalences $(1) \Leftrightarrow (2)$ and $(3) \Leftrightarrow (4)$ follow immediately from the definitions, and the equivalence $(2) \Leftrightarrow (3)$ follows from Theorem 4.6.4.17.