7.5.1 Homotopy Limits of Kan Complexes
In this section, we introduce the homotopy limit of a diagram of Kan complexes, following Bousfield and Kan (see [MR0365573]).
Construction 7.5.1.1 (Homotopy Limits of Kan Complexes). Let $\operatorname{\mathcal{C}}$ be a category, let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Kan}$ be a diagram of Kan complexes indexed by $\operatorname{\mathcal{C}}$, and $\operatorname{N}_{\bullet }^{\mathscr {F}}(\operatorname{\mathcal{C}})$ denote the weighted nerve of $\mathscr {F}$ (Definition 5.3.3.1). We define
\[ \underset {\longleftarrow }{\mathrm{holim}}(\mathscr {F} ) = \operatorname{Fun}_{ / \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) }( \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}), \operatorname{N}_{\bullet }^{\mathscr {F}}(\operatorname{\mathcal{C}})) \]
to be the simplicial set which parametrizes sections of the projection map $\operatorname{N}_{\bullet }^{\mathscr {F}}(\operatorname{\mathcal{C}}) \rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$. We will refer to $ \underset {\longleftarrow }{\mathrm{holim}}(\mathscr {F})$ as the homotopy limit of the diagram $\mathscr {F}$.
Proposition 7.5.1.2. Let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Kan}$ be a diagram of Kan complexes. Then the homotopy limit $ \underset {\longleftarrow }{\mathrm{holim}}(\mathscr {F} )$ is a Kan complex.
Proof.
This is a special case of Corollary 4.4.2.5, since the projection map $U: \operatorname{N}_{\bullet }^{\mathscr {F}}(\operatorname{\mathcal{C}}) \rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$ is a left fibration (Corollary 5.3.3.19).
$\square$
Warning 7.5.1.4. In [MR0365573], Bousfield and Kan define the homotopy limit of an arbitrary diagram $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$ to be the simplicial set $\operatorname{Fun}_{ / \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) }( \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}), \operatorname{N}_{\bullet }^{\mathscr {F}}(\operatorname{\mathcal{C}}))$ appearing in Construction 7.5.1.1. We will avoid this convention for two reasons:
Many important features of the Bousfield-Kan construction (such as the homotopy invariance property of Remark 7.5.1.3) are true for diagrams of Kan complexes, but not for general diagrams of simplicial sets.
In the case where $\mathscr {F}$ is a diagram of $\infty $-categories, it will be convenient to adopt a slightly different definition of homotopy limit (Construction 7.5.2.1), which generally does not agree with the Bousfield-Kan construction.
Note that every (strictly commutative) diagram of Kan complexes $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Kan}$ determines a diagram
\[ \operatorname{N}_{\bullet }^{\operatorname{hc}}: \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) \rightarrow \operatorname{N}_{\bullet }^{\operatorname{hc}}( \operatorname{Kan}) = \operatorname{\mathcal{S}} \]
in the $\infty $-category of spaces $\operatorname{\mathcal{S}}$.
Proposition 7.5.1.5. Let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Kan}$ be a diagram of Kan complexes. Then the Kan complex $ \underset {\longleftarrow }{\mathrm{holim}}(\mathscr {F})$ is a limit of the diagram
\[ \operatorname{N}_{\bullet }^{\operatorname{hc}}( \mathscr {F}): \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) \rightarrow \operatorname{N}_{\bullet }^{\operatorname{hc}}( \operatorname{Kan}) = \operatorname{\mathcal{S}} \]
in the $\infty $-category $\operatorname{\mathcal{S}}$.
Proof.
This is a special case of Proposition 7.4.1.6, since the functor $\operatorname{N}_{\bullet }^{\operatorname{hc}}(\mathscr {F} )$ is a covariant transport representation for the projection map $U: \operatorname{N}_{\bullet }^{\mathscr {F}}(\operatorname{\mathcal{C}}) \rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$ (Example 5.6.5.6).
$\square$
We now give a more concrete description of the homotopy limit.
In particular, we have an equalizer diagram of simplicial sets
\[ \underset {\longleftarrow }{\mathrm{holim}}(\mathscr {F}) \rightarrow {\prod }_{C} \operatorname{Fun}( \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}_{/C} ), \mathscr {F}(C) ) \rightrightarrows {\prod }_{f: C \rightarrow D} \operatorname{Fun}( \operatorname{N}_{\bullet }( \operatorname{\mathcal{C}}_{/C} ), \mathscr {F}(D) ). \]
Example 7.5.1.7 (Duality with Homotopy Colimits). Let $\mathscr {F}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{Set_{\Delta }}$ be a diagram of simplicial sets, let $X$ be a Kan complex, and let $X^{\mathscr {F}}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Kan}$ be the diagram of Kan complexes given by the formula $X^{\mathscr {F}}(C) = \operatorname{Fun}( \mathscr {F}(C), X)$. Let us write $\mathscr {F}^{\operatorname{op}}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{Set_{\Delta }}$ for the functor given by the formula $\mathscr {F}^{\operatorname{op}}(C) = \mathscr {F}(C)^{\operatorname{op}}$, and let $\mathscr {E}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$ denote the functor given by $\mathscr {E}(C) = \operatorname{N}_{\bullet }( \operatorname{\mathcal{C}}_{/C} )$. Combining Remark 7.5.1.6 with Proposition 5.3.2.21, we obtain canonical isomorphisms
\begin{eqnarray*} \underset {\longleftarrow }{\mathrm{holim}}( X^{\mathscr {F}} )^{\operatorname{op}} & \simeq & \operatorname{Hom}_{ \operatorname{Fun}( \operatorname{\mathcal{C}}, \operatorname{Set_{\Delta }})}( \mathscr {E}, X^{\mathscr {F}} )^{\operatorname{op}}_{\bullet } \\ & \simeq & \operatorname{Hom}_{ \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{Set_{\Delta }}) }( \mathscr {F}, X^{\mathscr {E}} )^{\operatorname{op}}_{\bullet } \\ & \simeq & \operatorname{Fun}( \underset { \longrightarrow }{\mathrm{holim}}( \mathscr {F}^{\operatorname{op}} ), X^{\operatorname{op}} ). \end{eqnarray*}