7.5.2 Homotopy Limits of $\infty $-Categories
We now extend the definition of homotopy limit to diagrams taking values in the category $\operatorname{QCat}$.
Construction 7.5.2.1 (Homotopy Limits of $\infty $-Categories). Let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{QCat}$ be a (strictly commutative) diagram of $\infty $-categories, let $\operatorname{N}_{\bullet }^{\mathscr {F}}(\operatorname{\mathcal{C}})$ denote the weighted nerve of $\mathscr {F}$ (Definition 5.3.3.1), and let $U: \operatorname{N}_{\bullet }^{\mathscr {F}}(\operatorname{\mathcal{C}}) \rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$ the cocartesian fibration of Corollary 5.3.3.16. We let $ \underset {\longleftarrow }{\mathrm{holim}}(\mathscr {F})$ denote the full subcategory
\[ \operatorname{Fun}^{\operatorname{CCart}}_{ / \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) }( \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}), \operatorname{N}_{\bullet }^{\mathscr {F}}(\operatorname{\mathcal{C}})) \subseteq \operatorname{Fun}_{ / \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) }( \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}), \operatorname{N}_{\bullet }^{\mathscr {F}}(\operatorname{\mathcal{C}})) \]
whose objects are functors $G: \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) \rightarrow \operatorname{N}_{\bullet }^{\mathscr {F}}(\operatorname{\mathcal{C}})$ which satisfy $U \circ G = \operatorname{id}_{ \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) }$ and which carry each morphism of $\operatorname{\mathcal{C}}$ to a $U$-cocartesian morphism of $\operatorname{N}_{\bullet }^{\mathscr {F}}(\operatorname{\mathcal{C}})$ (see Notation 5.3.1.10). We will refer to $ \underset {\longleftarrow }{\mathrm{holim}}(\mathscr {F})$ as the homotopy limit of the diagram $\mathscr {F}$.
Example 7.5.2.2 (Homotopy Limits of Kan Complexes). Let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Kan}$ be a (strictly commutative) diagram of Kan complexes. Then the projection map $U: \operatorname{N}_{\bullet }^{\mathscr {F}}(\operatorname{\mathcal{C}}) \rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$ is a left fibration of simplicial sets (Corollary 5.3.3.19). It follows that every morphism of the $\infty $-category $\operatorname{N}_{\bullet }^{\mathscr {F}}(\operatorname{\mathcal{C}})$ is $U$-cocartesian, so the homotopy limit $ \underset {\longleftarrow }{\mathrm{holim}}(\mathscr {F})$ of Construction 7.5.2.1 coincides with the homotopy limit $ \underset {\longleftarrow }{\mathrm{holim}}(\mathscr {F} )$ of Construction 7.5.1.1.
Variant 7.5.2.4 (Homotopy Limits of Ordinary Categories). Let $\operatorname{Cat}$ denote the (ordinary) category of categories, let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Cat}$ be a functor, and let $\int _{\operatorname{\mathcal{C}}} \mathscr {F}$ denote the category of elements of $\mathscr {F}$. We let $ \underset {\longleftarrow }{\mathrm{holim}}(\mathscr {F})$ denote the category $\operatorname{Fun}_{ / \operatorname{\mathcal{C}}}^{\operatorname{CCart}}( \operatorname{\mathcal{C}}, \int _{\operatorname{\mathcal{C}}} \mathscr {F} )$ whose objects are sections of the projection functor $U: \int _{\operatorname{\mathcal{C}}} \mathscr {F} \rightarrow \operatorname{\mathcal{C}}$ which carry each morphism of $\operatorname{\mathcal{C}}$ to a $U$-cocartesian morphism of $\int _{\operatorname{\mathcal{C}}} \mathscr {F}$. Let $\operatorname{N}_{\bullet }( \mathscr {F} )$ denote the $\operatorname{QCat}$-valued functor given by $C \mapsto \operatorname{N}_{\bullet }( \mathscr {F}(C) )$. Combining Proposition 1.5.3.3 with Example 5.6.1.8, we obtain a canonical isomorphism of simplicial sets
\[ \underset {\longleftarrow }{\mathrm{holim}}( \operatorname{N}_{\bullet }( \mathscr {F} ) ) \simeq \operatorname{N}_{\bullet }( \underset {\longleftarrow }{\mathrm{holim}}(\mathscr {F} ) ). \]
In particular, the formation of homotopy limits preserves the full subcategory of $\operatorname{QCat}$ spanned by the (nerves of) ordinary categories.
Proposition 7.5.2.6. Let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{QCat}$ be a (strictly commutative) diagram of $\infty $-categories. Then the homotopy limit $ \underset {\longleftarrow }{\mathrm{holim}}(\mathscr {F})$ is an $\infty $-category. Moreover, $ \underset {\longleftarrow }{\mathrm{holim}}(\mathscr {F} )$ can be identified with a limit of the diagram
\[ \operatorname{N}_{\bullet }^{\operatorname{hc}}( \mathscr {F}): \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) \rightarrow \operatorname{N}_{\bullet }^{\operatorname{hc}}( \operatorname{QCat}) = \operatorname{\mathcal{QC}} \]
in the $\infty $-category $\operatorname{\mathcal{QC}}$.
Proof.
By virtue of Example 5.6.5.6, the functor $\operatorname{N}_{\bullet }^{\operatorname{hc}}( \mathscr {F} )$ is a covariant transport representation for the cocartesian fibration $U: \operatorname{N}_{\bullet }^{\mathscr {F}}(\operatorname{\mathcal{C}}) \rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$. Proposition 7.5.2.6 is therefore a special case of Proposition 7.4.4.1.
$\square$
Example 7.5.2.8 (Homotopy Limits of Cores). Let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{QCat}$ be a diagram of $\infty $-categories, and let $\mathscr {F}^{\simeq }: \operatorname{\mathcal{C}}\rightarrow \operatorname{Kan}$ be the functor given on objects by the formula $\mathscr {F}^{\simeq }(C) = \mathscr {F}(C)^{\simeq }$. Then the inclusion map $\mathscr {F}^{\simeq } \hookrightarrow \mathscr {F}$ induces a monomorphism of simplicial sets $ \underset {\longleftarrow }{\mathrm{holim}}( \mathscr {F}^{\simeq } ) \rightarrow \underset {\longleftarrow }{\mathrm{holim}}( \mathscr {F} )$, whose image is the core of the $\infty $-category $ \underset {\longleftarrow }{\mathrm{holim}}(\mathscr {F})$ (see Example 5.3.3.21 and Remark 5.3.1.20). In other words, there is a canonical isomorphism of Kan complexes $ \underset {\longleftarrow }{\mathrm{holim}}( \mathscr {F}^{\simeq } ) \simeq \underset {\longleftarrow }{\mathrm{holim}}( \mathscr {F})^{\simeq }$.
Example 7.5.2.11 (Duality with Homotopy Colimits). Let $\operatorname{\mathcal{C}}$ be a category, let $\mathscr {F}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{Set_{\Delta }}$ be a diagram of simplicial sets, and let $W$ denote the collection of horizontal edges of the homotopy colimit $ \underset { \longrightarrow }{\mathrm{holim}}( \mathscr {F}^{\operatorname{op}} )$ (see Definition 5.3.4.1). Let $\operatorname{\mathcal{D}}$ be an $\infty $-category and let $\operatorname{\mathcal{D}}^{\mathscr {F}}: \operatorname{\mathcal{C}}\rightarrow \operatorname{QCat}$ denote the functor given by the formula $\operatorname{\mathcal{D}}^{\mathscr {F}}(C) = \operatorname{Fun}( \mathscr {F}(C), \operatorname{\mathcal{D}})$. Arguing as in Example 7.5.1.7, we obtain a canonical isomorphism
\[ \theta : \operatorname{Fun}_{ / \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) }( \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}), \operatorname{N}_{\bullet }^{\operatorname{\mathcal{D}}^{\mathscr {F}} }(\operatorname{\mathcal{C}}) )^{\operatorname{op}} \simeq \operatorname{Fun}( \underset { \longrightarrow }{\mathrm{holim}}(\mathscr {F}^{\operatorname{op}}), \operatorname{\mathcal{D}}^{\operatorname{op}} ). \]
Unwinding the definitions, we see that $\theta $ restricts to an isomorphism of $\infty $-categories $ \underset {\longleftarrow }{\mathrm{holim}}( \operatorname{\mathcal{D}}^{\mathscr {F}} )^{\operatorname{op}} \simeq \operatorname{Fun}( \underset { \longrightarrow }{\mathrm{holim}}(\mathscr {F}^{\operatorname{op}})[W^{-1}], \operatorname{\mathcal{D}}^{\operatorname{op}} )$.
Proposition 7.5.2.13. Let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{QCat}$ be a diagram of $\infty $-categories, and suppose that the category $\operatorname{\mathcal{C}}$ has an initial object. Then the comparison map $\iota : \varprojlim (\mathscr {F}) \hookrightarrow \underset {\longleftarrow }{\mathrm{holim}}(\mathscr {F})$ of Remark 7.5.2.12 is an equivalence of $\infty $-categories.
Proof.
Let $C \in \operatorname{\mathcal{C}}$ be an initial object, so that the inclusion map $\{ C\} \rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$ is left anodyne (Corollary 4.6.7.24). Applying Remark 7.5.2.9, we see that evaluation at $C$ induces an equivalence of $\infty $-categories $\operatorname{ev}_{C}: \underset {\longleftarrow }{\mathrm{holim}}(\mathscr {F}) \rightarrow \mathscr {F}(C)$. Our assumption that $C$ is initial also guarantees that the composition $(\operatorname{ev}_ C \circ \iota ): \varprojlim (\mathscr {F}) \rightarrow \mathscr {F}(C)$ is an isomorphism of simplicial sets, so that $\varprojlim (\mathscr {F})$ is an $\infty $-category and $\iota $ is an equivalence of $\infty $-categories.
$\square$
Example 7.5.2.14. Let $I$ be a set, which we regard as a category having only identity morphisms. Let $\mathscr {F}: I \rightarrow \operatorname{QCat}$ be a diagram, which we view as a collection of $\infty $-categories $\{ \operatorname{\mathcal{C}}_ i \} _{i \in I}$ indexed by $I$. Then the comparison morphism
\[ {\prod }_{i \in I} \operatorname{\mathcal{C}}_ i = \varprojlim (\mathscr {F}) \rightarrow \underset {\longleftarrow }{\mathrm{holim}}(\mathscr {F}) \]
of Remark 7.5.2.12 is an isomorphism.
Exercise 7.5.2.15 (Homotopy Limits of Sets). Let $\operatorname{\mathcal{C}}$ be a category and let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set}$ be a diagram in the category of sets. Let us abuse notation by identifying $\operatorname{Set}$ with the full subcategory of $\operatorname{Kan}$ spanned by the constant simplicial sets. Show that the comparison map $\varprojlim (\mathscr {F}) \hookrightarrow \underset {\longleftarrow }{\mathrm{holim}}(\mathscr {F})$ of Remark 7.5.2.12 is an isomorphism.
Beware that the comparison morphism of Remark 7.5.2.12 is not an isomorphism in general.
Example 7.5.2.16. Let $[1]$ denote the linearly ordered set $\{ 0 < 1 \} $ and let $\mathscr {F}: [1] \rightarrow \operatorname{QCat}$ be a diagram, which we identify with a functor of $\infty $-categories $T: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$. Then the homotopy limit $ \underset {\longleftarrow }{\mathrm{holim}}(\mathscr {F})$ of Construction 7.5.1.1 can be identified with the homotopy fiber product
\[ \operatorname{\mathcal{C}}\times ^{\mathrm{h}}_{\operatorname{\mathcal{D}}} \operatorname{\mathcal{D}}= \operatorname{\mathcal{C}}\times _{ \operatorname{Fun}( \{ 0\} , \operatorname{\mathcal{D}}) } \operatorname{Isom}(\operatorname{\mathcal{D}}) \]
of Construction 4.5.2.1. Under this identification, the comparison morphism $\varprojlim (\mathscr {F}) \rightarrow \underset {\longleftarrow }{\mathrm{holim}}(\mathscr {F})$ of Remark 7.5.2.12 corresponds to the monomorphism
\[ \operatorname{\mathcal{C}}\simeq \operatorname{\mathcal{C}}\times _{\operatorname{\mathcal{D}}} \operatorname{\mathcal{D}}\hookrightarrow \operatorname{\mathcal{C}}\times _{\operatorname{\mathcal{D}}}^{\mathrm{h}} \operatorname{\mathcal{D}} \]
of Proposition 3.4.0.7. This morphism is usually not an isomorphism of simplicial sets, though it is always an equivalence of $\infty $-categories (Proposition 7.5.2.13).
Example 7.5.2.17. Let $\operatorname{\mathcal{K}}$ be the partially ordered set depicted in the diagram
\[ \bullet \rightarrow \bullet \leftarrow \bullet \]
and suppose we are given a functor $\mathscr {F}: \operatorname{\mathcal{K}}\rightarrow \operatorname{QCat}$, which we depict as a diagram of $\infty $-categories
\[ \operatorname{\mathcal{C}}_0 \xrightarrow {T_0} \operatorname{\mathcal{C}}\xleftarrow {T_1} \operatorname{\mathcal{C}}_1. \]
Then the homotopy limit $ \underset {\longleftarrow }{\mathrm{holim}}(\mathscr {F})$ can be identified with the iterated homotopy pullback $\operatorname{\mathcal{C}}_0 \times ^{\mathrm{h}}_{\operatorname{\mathcal{C}}} (\operatorname{\mathcal{C}}_1 \times _{\operatorname{\mathcal{C}}}^{\mathrm{h}} \operatorname{\mathcal{C}})$. Applying Corollary 4.5.2.20, we see that the equivalence $\operatorname{\mathcal{C}}_1 \hookrightarrow \operatorname{\mathcal{C}}_1 \times _{\operatorname{\mathcal{C}}}^{\mathrm{h}} \operatorname{\mathcal{C}}$ of Example 7.5.2.16 induces an equivalence of $\infty $-categories
\[ \operatorname{\mathcal{C}}_0 \times ^{\mathrm{h}}_{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}_1 \hookrightarrow \operatorname{\mathcal{C}}_0 \times ^{\mathrm{h}}_{\operatorname{\mathcal{C}}} (\operatorname{\mathcal{C}}_1 \times _{\operatorname{\mathcal{C}}}^{\mathrm{h}} \operatorname{\mathcal{C}}) \simeq \underset {\longleftarrow }{\mathrm{holim}}(\mathscr {F}). \]
In particular, the comparison map $\varprojlim (\mathscr {F}) \rightarrow \underset {\longleftarrow }{\mathrm{holim}}(\mathscr {F})$ is a categorical equivalence of simplicial sets if and only if the inclusion $\operatorname{\mathcal{C}}_0 \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}_1 \hookrightarrow \operatorname{\mathcal{C}}_0 \times _{\operatorname{\mathcal{C}}}^{\mathrm{h}} \operatorname{\mathcal{C}}_1$ is a categorical equivalence of simplicial sets. This condition is satisfied if either $T_0$ or $T_1$ is a isofibration of $\infty $-categories (Corollary 4.5.2.28), but not in general.