10.1.3 Split Simplicial Objects
We now introduce a tool which is often useful for computing geometric realizations of simplicial objects.
Notation 10.1.3.1. We define a category $\operatorname{{\bf \Delta }}_{\mathrm{min}}$ as follows:
The objects of $\operatorname{{\bf \Delta }}_{\mathrm{min}}$ are linearly ordered sets $[n] = \{ 0 < 1 < \cdots < n \} $, where $n$ is a nonnegative integer.
A morphism from $[m]$ to $[n]$ in the category $\operatorname{{\bf \Delta }}_{\mathrm{min}}$ is a nondecreasing function $\alpha : [m] \rightarrow [n]$ satisfying $\alpha (0) = 0$.
Definition 10.1.3.3. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $X_{\bullet }$ be an augmented simplicial object of $\operatorname{\mathcal{C}}$ (Definition 10.1.1.12). A splitting of $X_{\bullet }$ is a functor $\overline{X}: \operatorname{N}_{\bullet }( \operatorname{{\bf \Delta }}_{ \mathrm{min}}^{\operatorname{op}} ) \rightarrow \operatorname{\mathcal{C}}$ for which the composition
\[ \operatorname{N}_{\bullet }( \operatorname{{\bf \Delta }}_{+}^{\operatorname{op}} ) \xrightarrow {C^{\operatorname{op}}_{+}} \operatorname{N}_{\bullet }( \operatorname{{\bf \Delta }}_{\mathrm{min}}^{\operatorname{op}} ) \xrightarrow { \overline{X} } \operatorname{\mathcal{C}} \]
is equal to $X_{\bullet }$; here $C_{+}$ denotes the concatenation functor $[n] \mapsto [n] \star [0]$ of Remark 10.1.3.2. We will say that the augmented simplicial object $X_{\bullet }$ is split if there exists a splitting of $X_{\bullet }$.
Exercise 10.1.3.5. Let $\operatorname{\mathcal{C}}$ be an ordinary category and let $X_{\bullet }$ be an augmented simplicial object of $\operatorname{\mathcal{C}}$. Show that the construction of Remark 10.1.3.4 determines a bijection from the set of splittings of $X_{\bullet }$ (in the sense of Definition 10.1.3.3) to the collection of systems $\{ h_{n}: X_{n} \rightarrow X_{n+1} \} _{n \geq -1}$ satisfying the identities (10.11) and (10.14).
Example 10.1.3.6. Let $A_{\bullet }$ be an augmented simplicial abelian group, and let
\[ \mathrm{C}_{\ast }^{\mathrm{aug}}( A ) = ( \cdots \rightarrow A_{2} \xrightarrow {\partial } A_{1} \xrightarrow {\partial } A_0 \xrightarrow {\partial } A_{-1} ) \]
denote its augmented Moore complex (Remark 10.1.2.21). Suppose we are given a splitting of $A_{\bullet }$, and let $\{ h_{n}: A_{n} \rightarrow A_{n+1} \} _{n \geq -1}$ be the extra degeneracy operators described in Remark 10.1.3.4. Then the collection $\{ h_{n} \} $ is a contracting homotopy for $\mathrm{C}_{\ast }^{\operatorname{aug}}( A )$, in the sense of Definition 2.5.0.5: that is, the
\[ ( h_{n-1} \circ \partial + \partial \circ h_{n} ): A_{n} \rightarrow A_{n} \]
is equal to the identity for each $n \geq -1$ (where we adopt the convention that $h_{n} \circ \partial = 0$ for $n = -1$). This follows from the calculation
\begin{eqnarray*} h_{n-1} \circ \partial + \partial \circ h_{n} & = & (\sum _{i=0}^{n} (-1)^{i} h_{n-1} \circ d^{n}_{i}) + (\sum _{j=0}^{n+1} (-1)^{j} d^{n+1}_{j} \circ h_{n}) \\ & = & (\sum _{i=0}^{n} (-1)^{i} (h_{n-1} \circ d^{n}_{i} - d^{n+1}_{i+1} \circ h_{n} ) ) + d^{n+1}_{0} \circ h_{n} \\ & = & \operatorname{id}_{ A_{n} }. \end{eqnarray*}
where the final equality follows from the identities (10.11).
Variant 10.1.3.7. In the situation of Example 10.1.3.6, let $\mathrm{N}_{\ast }^{\mathrm{aug}}(A)$ denote the augmented normalized Moore complex of $A_{\bullet }$ (Variant 10.1.2.22). It follows from (10.14) that, for every integer $n \geq 0$, the operator
\[ \mathrm{C}^{\operatorname{aug}}_{n}(A) = A_{n} \xrightarrow {h_ n} A_{n+1} = \mathrm{C}^{\operatorname{aug}}_{n+1}(A) \]
carries degenerate $N$-simplices of $A_{\bullet }$ to degenerate $(n+1)$-simplices of $A_{\bullet }$, and therefore descends to an operator $\overline{h}_{n}: \mathrm{N}^{\operatorname{aug}}_{n}(A) \rightarrow \mathrm{N}^{\operatorname{aug}}_{n+1}(A)$. The collection of homomorphisms $\{ \overline{h}_{n} \} $ then determine a contracting homotopy for the chain complex $\mathrm{N}_{\ast }^{\mathrm{aug}}(A)$.
Warning 10.1.3.8. Let $A_{\bullet }$ be an augmented simplicial abelian group. In general, not every contracting homotopy for the chain complex $\mathrm{N}_{\ast }^{\mathrm{aug}}(A)$ can be obtained from the construction of Variant 10.1.3.7. A splitting of $A_{\bullet }$ determines a system of homomorphisms $\{ h_{n}: A_{n} \rightarrow A_{n+1} \} _{n \geq 0}$ which satisfy the identity $h_{n+1} \circ h_{n} = s^{n+1}_{0} \circ h_{n}$ (Remark 10.1.3.4). In particular, the composition $h_{n+1} \circ h_{n}$ carries every $n$-simplex of $A_{\bullet }$ to a degenerate $(n+1)$-simplex of $A_{\bullet }$. It follows that the composite map
\[ \mathrm{N}_{n}^{\operatorname{aug}}( A ) \xrightarrow { \overline{h}_{n} } \mathrm{N}_{n+1}^{\operatorname{aug}}( A ) \xrightarrow { \overline{h}_{n+1} } \mathrm{N}_{n+2}^{\operatorname{aug}}(A) \]
vanishes; for a general contracting homotopy, the analogous statement need not be true.
The utility of Definition 10.1.3.3 stems from the following:
Proposition 10.1.3.9. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $X_{\bullet }$ be an augmented simplicial object of $\operatorname{\mathcal{C}}$. If $X_{\bullet }$ is split, then it is a colimit diagram in $\operatorname{\mathcal{C}}$.
Proof.
Let $\overline{X}: \operatorname{N}_{\bullet }( \operatorname{{\bf \Delta }}_{ \mathrm{min} }^{\operatorname{op}} ) \rightarrow \operatorname{\mathcal{C}}$ be a splitting of $X_{\bullet }$, and let $C_{+}: \operatorname{{\bf \Delta }}_{+} \rightarrow \operatorname{{\bf \Delta }}_{\mathrm{min}}$ denote the concatenation functor of Remark 10.1.3.2. Let us abuse notation by identifying $\operatorname{N}_{\bullet }( \operatorname{{\bf \Delta }}_{+}^{\operatorname{op}} )$ with the cone $\operatorname{N}_{\bullet }( \operatorname{{\bf \Delta }}^{\operatorname{op}} )^{\triangleright }$. We wish to show that the augmented simplicial object
\[ (X_{\bullet } = \overline{X} \circ \operatorname{N}_{\bullet }( C_{+}^{\operatorname{op}} ) ): \operatorname{N}_{\bullet }( \operatorname{{\bf \Delta }}^{\operatorname{op}} )^{\triangleright } \rightarrow \operatorname{\mathcal{C}} \]
is a colimit diagram in $\operatorname{\mathcal{C}}$.
Note that $[0]$ is initial when viewed as an object of the category $\operatorname{{\bf \Delta }}_{ \mathrm{min} }$, and therefore final when viewed as an object of the $\infty $-category $\operatorname{N}_{\bullet }( \operatorname{{\bf \Delta }}_{\mathrm{min}}^{\operatorname{op}} )$. Unwinding the definitions, we see that the functor $\operatorname{N}_{\bullet }( C_{+}^{\operatorname{op}} )$ factors as a composition
\[ \operatorname{N}_{\bullet }( \operatorname{{\bf \Delta }}^{\operatorname{op}} )^{\triangleright } \xrightarrow { \operatorname{N}_{\bullet }( C )^{\triangleright }} \operatorname{N}_{\bullet }( \operatorname{{\bf \Delta }}_{\mathrm{min}}^{\operatorname{op}} )^{\triangleright } \xrightarrow {R} \operatorname{N}_{\bullet }( \operatorname{{\bf \Delta }}_{\mathrm{min} }^{\operatorname{op}} ), \]
where $R$ is the identity when restricted to $\operatorname{N}_{\bullet }( \operatorname{{\bf \Delta }}_{\mathrm{min}}^{\operatorname{op}} )$ and carries the cone point of $\operatorname{N}_{\bullet }( \operatorname{{\bf \Delta }}_{\mathrm{min}}^{\operatorname{op}} )^{\triangleright }$ to $[0]$. Applying Corollary 7.2.2.6, we deduce that $(\overline{X} \circ R): \operatorname{N}_{\bullet }( \operatorname{{\bf \Delta }}_{\mathrm{min}}^{\operatorname{op}} )^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ is a colimit diagram. Consequently, to show that $X_{\bullet }$ is a colimit diagram, it will suffice to show that the functor $\operatorname{N}_{\bullet }( C^{\operatorname{op}} ): \operatorname{N}_{\bullet }( \operatorname{{\bf \Delta }}^{\operatorname{op}} ) \rightarrow \operatorname{N}_{\bullet }( \operatorname{{\bf \Delta }}_{\mathrm{min}}^{\operatorname{op}} )$ is right cofinal (Corollary 7.2.2.3). This is a special case of Corollary 7.2.3.7, since the concatenation functor $C$ is left adjoint to the inclusion $\operatorname{{\bf \Delta }}_{\mathrm{min}} \hookrightarrow \operatorname{{\bf \Delta }}$ (Remark 10.1.3.2).
$\square$
Variant 10.1.3.11. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $X_{\bullet }$ be a simplicial object of $\operatorname{\mathcal{C}}$. A splitting of $X_{\bullet }$ is a functor $\overline{X}: \operatorname{N}_{\bullet }( \operatorname{{\bf \Delta }}_{ \mathrm{min}}^{\operatorname{op}} ) \rightarrow \operatorname{\mathcal{C}}$ for which the composition
\[ \operatorname{N}_{\bullet }( \operatorname{{\bf \Delta }}_{+}^{\operatorname{op}} ) \xrightarrow {C^{\operatorname{op}}} \operatorname{N}_{\bullet }( \operatorname{{\bf \Delta }}_{\mathrm{min}}^{\operatorname{op}} ) \xrightarrow { \overline{X} } \operatorname{\mathcal{C}} \]
is equal to $X_{\bullet }$; here $C$ denotes the concatenation functor $[n] \mapsto [n] \star [0]$ of Remark 10.1.3.2. We will say that the simplicial object $X_{\bullet }$ is split if there exists a splitting of $X_{\bullet }$.
Warning 10.1.3.12. The terminology of Variant 10.1.3.11 (and Definition 10.1.3.3) is potentially confusing. We will use the term split simplicial object to refer to a simplicial object $X_{\bullet }$ of an $\infty $-category $\operatorname{\mathcal{C}}$ for which there exists a splitting $\overline{X}: \operatorname{N}_{\bullet }( \operatorname{{\bf \Delta }}_{ \mathrm{min}}^{\operatorname{op}} ) \rightarrow \operatorname{\mathcal{C}}$. Unless otherwise specified, we do not assume that a particular splitting has been chosen. Beware that $\overline{X}$ is not uniquely determined by $X_{\bullet }$. However, the underlying augmented simplicial object
\[ \operatorname{N}_{\bullet }( \operatorname{{\bf \Delta }}_{+}^{\operatorname{op}} ) \xrightarrow { \operatorname{N}_{\bullet }( C_{+}^{\operatorname{op}} ) } \operatorname{N}_{\bullet }( \operatorname{{\bf \Delta }}_{\mathrm{min}} ) \xrightarrow { \overline{X} } \operatorname{\mathcal{C}} \]
is determined up to isomorphism by $X_{\bullet }$: by virtue of Proposition 10.1.3.9, it is an extension of $X_{\bullet }$ to a colimit diagram in $\operatorname{\mathcal{C}}$.
Corollary 10.1.3.13. Let $X_{\bullet }$ be a split simplicial object of an $\infty $-category $\operatorname{\mathcal{C}}$. Then $X_{\bullet }$ admits a geometric realization $| X_{\bullet } |$. Moreover, the geometric realization of $X_{\bullet }$ is preserved by any functor of $\infty $-categories $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$.
Proof.
The first assertion follows from Proposition 10.1.3.9, and the second from Remark 10.1.3.10.
$\square$
We close this section by describing an important special class of split simplicial objects.
Construction 10.1.3.14 (Decalage). Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $X_{\bullet }$ be a simplicial object of $\operatorname{\mathcal{C}}$. We let $\operatorname{Dec}_{+}( X )_{\bullet }$ denote the augmented simplicial object of $\operatorname{\mathcal{C}}$ given by the composition
\[ \operatorname{N}_{\bullet }( \operatorname{{\bf \Delta }}_{+}^{\operatorname{op}} ) \xrightarrow { \operatorname{N}_{\bullet }(C^{\operatorname{op}}_{+}) } \operatorname{N}_{\bullet }( \operatorname{{\bf \Delta }}^{\operatorname{op}} ) \xrightarrow { X_{\bullet } } \operatorname{\mathcal{C}}, \]
where $C_{+}$ denote the concatenation functor of Remark 10.1.3.2. We will refer to $\operatorname{Dec}_{+}(X)_{\bullet }$ as the augmented decalage of $X_{\bullet }$. We let $\operatorname{Dec}(X)_{\bullet }$ denote the underlying simplicial object of $\operatorname{Dec}_{+}(X)_{\bullet }$, given by the composition
\[ \operatorname{N}_{\bullet }( \operatorname{{\bf \Delta }}_{+}^{\operatorname{op}} ) \xrightarrow { \operatorname{N}_{\bullet }(C^{\operatorname{op}}) } \operatorname{N}_{\bullet }( \operatorname{{\bf \Delta }}^{\operatorname{op}} ) \xrightarrow { X_{\bullet } } \operatorname{\mathcal{C}}. \]
We will defer to $\operatorname{Dec}(X)_{\bullet }$ as the decalage of $\operatorname{Dec}(X)_{\bullet }$.
Example 10.1.3.16. Let $X$ be a simplicial set. Then the decalage $\operatorname{Dec}(X)_{\bullet }$ can be identified with the disjoint union of coslice constructions $\coprod _{x} X_{x/}$, where the coproduct is indexed by the collection of all vertices $x \in X$.
Warning 10.1.3.19. Let $X_{\bullet }$ be a simplicial object of an $\infty $-category $\operatorname{\mathcal{C}}$. It follows from Remark 10.1.3.18 that every splitting of $X_{\bullet }$ determines a right homotopy inverse to the comparison map $T_{\bullet }: \operatorname{Dec}(X)_{\bullet } \rightarrow X_{\bullet }$. Beware that, in general, not every right homotopy inverse can be obtained in this way. For example, suppose that $\operatorname{\mathcal{C}}$ is (the nerve of) an ordinary category. Unwinding the definitions, we see that a morphism of simplicial objects from $X_{\bullet }$ to $\operatorname{Dec}(X)_{\bullet }$ is given by a collection of morphisms $h_{n}: X_{n} \rightarrow \operatorname{Dec}(X)_{n} = X_{n+1}$ which satisfy the identities
\[ d^{n+1}_{i} \circ h_ n = h_{n-1} \circ d^{n}_{i-1} \quad \quad s^{n+1}_{i} \circ h_{n} = h_{n+1} \circ s^{n}_{i-1} \]
for $0 < i \leq n+1$. Moreover, $h_{\bullet }$ is a right inverse of $T_{\bullet }$ if and only if it satisfies the further identity $d^{n+1}_{0} \circ h_ n = \operatorname{id}_{ X_ n }$ for each $n \geq 0$. However, $h_{\bullet }$ arises from a splitting of the simplicial object $X_{\bullet }$ only if it also satisfies the identities $s^{n+1}_{0} \circ h_{n} = h_{n+1} \circ h_{n}$; see Exercise 10.1.3.5 (compare with Warning 10.1.3.8).