Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 7.2.2.3. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $e: A \rightarrow B$ be a left cofinal morphism of simplicial sets. Then a morphism of simplicial sets $\overline{f}: B^{\triangleleft } \rightarrow \operatorname{\mathcal{C}}$ is a limit diagram if and only if the composite map

\[ A^{\triangleleft } \xrightarrow {e^{\triangleleft }} B^{\triangleleft } \xrightarrow { \overline{f} } \operatorname{\mathcal{C}} \]

is a limit diagram.

Proof. Apply Corollary 7.2.2.2 in the special case $\operatorname{\mathcal{D}}= \Delta ^0$ (see Example 7.1.6.3). $\square$