7.3.4 Kan Extensions along Fibrations
In this section, we study the formation of left Kan extension along cocartesian fibrations. We can state a preliminary version of our main result as follows:
Proposition 7.3.4.1. Let $\delta : \operatorname{\mathcal{K}}\rightarrow \operatorname{\mathcal{C}}$ be a cocartesian fibration of $\infty $-categories. Suppose we are given functors of $\infty $-categories $F_0: \operatorname{\mathcal{K}}\rightarrow \operatorname{\mathcal{D}}$ and $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ and a natural transformation $\beta : F_0 \rightarrow F \circ \delta $. The following conditions are equivalent:
- $(1)$
The natural transformation $\beta $ exhibits $F$ as a left Kan extension of $F_0$ along $\delta $.
- $(2)$
For each object $C \in \operatorname{\mathcal{C}}$, the restriction of $\beta $ to the fiber $\operatorname{\mathcal{K}}_{C} = \{ C\} \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{K}}$ determines a natural transformation $F_0|_{ \operatorname{\mathcal{K}}_{C} } \rightarrow \underline{ F(C) }$ which exhibits $F(C)$ as a colimit of the diagram $F_0|_{ \operatorname{\mathcal{K}}_{C} }$ in the $\infty $-category $\operatorname{\mathcal{D}}$.
Proof.
By virtue of Corollary 7.2.2.7, it will suffice to show that for each object $C \in \operatorname{\mathcal{C}}$, the tautological map
\[ \operatorname{\mathcal{K}}_{C} = \operatorname{\mathcal{K}}\times _{\operatorname{\mathcal{C}}} \{ C\} \hookrightarrow \operatorname{\mathcal{K}}\times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}_{/C} \]
is right cofinal. Since $\delta $ is a cocartesian fibration, it will suffice to show that the inclusion map $\{ \operatorname{id}_ C \} \hookrightarrow \operatorname{\mathcal{C}}_{/C}$ is right cofinal (Proposition 7.2.3.12). This follows from Corollary 4.6.7.24, since $\operatorname{id}_{C}$ is a final object of the $\infty $-category $\operatorname{\mathcal{C}}_{/C}$ (Proposition 4.6.7.22).
$\square$
Corollary 7.3.4.2. Let $\delta : \operatorname{\mathcal{K}}\rightarrow \operatorname{\mathcal{C}}$ be a cocartesian fibration of $\infty $-categories and let $F: \operatorname{\mathcal{K}}\star _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty $-categories. The following conditions are equivalent:
- $(1)$
The functor $F$ is left Kan extended from $\operatorname{\mathcal{K}}$.
- $(2)$
For every object $C \in \operatorname{\mathcal{C}}$, the functor
\[ F_{C}: \operatorname{\mathcal{K}}_{C}^{\triangleright } \simeq \operatorname{\mathcal{K}}_{C} \star _{ \{ C\} } \{ C\} \hookrightarrow \operatorname{\mathcal{K}}\star _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}\xrightarrow {F} \operatorname{\mathcal{D}} \]
is a colimit diagram.
Proof.
Combine Propositions 7.3.4.1 and 7.3.2.11.
$\square$
Corollary 7.3.4.2 generalizes to the setting of relative Kan extensions:
Proposition 7.3.4.3. Let $\delta : \operatorname{\mathcal{K}}\rightarrow \operatorname{\mathcal{C}}$ be a cocartesian fibration of $\infty $-categories and let $F: \operatorname{\mathcal{K}}\star _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ and $U: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{E}}$ be functors. The following conditions are equivalent:
- $(1)$
The functor $F$ is $U$-left Kan extended from $\operatorname{\mathcal{K}}$.
- $(2)$
For every object $C \in \operatorname{\mathcal{C}}$, the functor
\[ F_{C}: \operatorname{\mathcal{K}}_{C}^{\triangleright } \simeq \operatorname{\mathcal{K}}_{C} \star _{ \{ C\} } \{ C\} \hookrightarrow \operatorname{\mathcal{K}}\star _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}\xrightarrow {F} \operatorname{\mathcal{D}} \]
is a $U$-colimit diagram.
Proof.
By virtue of Proposition 7.3.3.7, it will suffice to show that for each object $C \in \operatorname{\mathcal{C}}$, the following conditions are equivalent:
- $(1_ C)$
The functor $F$ is $U$-left Kan extended from $\operatorname{\mathcal{K}}$ at $C$.
- $(2_ C)$
The functor $F_{C}$ is a $U$-colimit diagram.
This follows from Corollary 7.2.2.3, since the tautological map
\[ \operatorname{\mathcal{K}}_{C} \simeq \{ \operatorname{id}_ C \} \times _{ \operatorname{\mathcal{C}}_{/C} } \operatorname{\mathcal{K}}_{/C} \hookrightarrow \operatorname{\mathcal{K}}_{/C} \]
is right cofinal (as noted in the proof of Proposition 7.3.4.1).
$\square$
Our next goal is establish a companion to Proposition 7.3.4.1, which provides necessary and sufficient conditions for the existence of a left Kan extension.
Proposition 7.3.4.4. Let $\delta : \operatorname{\mathcal{K}}\rightarrow \operatorname{\mathcal{C}}$ be a cocartesian fibration of $\infty $-categories and let $F_0: \operatorname{\mathcal{K}}\rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty $-categories. The following conditions are equivalent:
- $(1)$
The functor $F_0$ admits a left Kan extension along $\delta $.
- $(2)$
For every object $C \in \operatorname{\mathcal{C}}$, the induced diagram
\[ \operatorname{\mathcal{K}}_{C} = \{ C\} \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{K}}\hookrightarrow \operatorname{\mathcal{K}}\xrightarrow {F_0} \operatorname{\mathcal{D}} \]
has a colimit in the $\infty $-category $\operatorname{\mathcal{D}}$.
Note that the implication $(1) \Rightarrow (2)$ of Proposition 7.3.4.4 follows immediately from Proposition 7.3.4.1. To prove the converse, it will be convenient to again translate to a question about the inclusion map $\operatorname{\mathcal{K}}\hookrightarrow \operatorname{\mathcal{K}}\star _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}$, which we will address in a more general form. First, we need a variant of Corollary 7.1.7.9.
Lemma 7.3.4.5. Let $\delta : \operatorname{\mathcal{K}}\rightarrow \operatorname{\mathcal{C}}$ be a cocartesian fibration of simplicial sets, let $U: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{E}}$ be an isofibration of $\infty $-categories, let $\operatorname{\mathcal{C}}_0 \subseteq \operatorname{\mathcal{C}}$ be a simplicial subset which contains every vertex of $\operatorname{\mathcal{C}}$, and set $\operatorname{\mathcal{K}}_0 = \operatorname{\mathcal{C}}_0 \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{K}}$. Suppose we are given a lifting problem
7.15
\begin{equation} \begin{gathered}\label{equation:fiberwise-relative-Kan-general} \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{K}}{\coprod }_{\operatorname{\mathcal{K}}_0} (\operatorname{\mathcal{K}}_0 \star _{\operatorname{\mathcal{C}}_0} \operatorname{\mathcal{C}}_0) \ar [r]^-{F_0} \ar [d] & \operatorname{\mathcal{D}}\ar [d]^{U} \\ \operatorname{\mathcal{K}}\star _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}\ar [r] \ar@ {-->}[ur] & \operatorname{\mathcal{E}}} \end{gathered} \end{equation}
which satisfies the following condition:
- $(\ast )$
Let $\sigma : \Delta ^ n \rightarrow \operatorname{\mathcal{C}}$ be an $n$-simplex which is not contained in $\operatorname{\mathcal{C}}_0$ and set $C = \sigma (0)$. Then the composite map
\[ \operatorname{\mathcal{K}}_ C^{\triangleright } \simeq \operatorname{\mathcal{K}}_{C} \star _{ \{ C\} } \{ C\} \hookrightarrow \operatorname{\mathcal{K}}_0 \star _{ \operatorname{\mathcal{C}}_0 } \operatorname{\mathcal{C}}_0 \xrightarrow {F_0} \operatorname{\mathcal{D}} \]
is a $U$-colimit diagram in the $\infty $-category $\operatorname{\mathcal{D}}$.
Then the lifting problem (7.15) admits a solution.
Proof.
Without loss of generality, we may assume that $\operatorname{\mathcal{C}}$ is an $\infty $-category (working one simplex at a time, we could even assume that $\operatorname{\mathcal{C}}= \Delta ^ m$ is a standard simplex and that $\operatorname{\mathcal{C}}_0 = \operatorname{\partial \Delta }^ m$ is its boundary). Set $\overline{\operatorname{\mathcal{K}}} = \operatorname{\mathcal{K}}\star _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}$, so that $\delta $ extends to a map
\[ \overline{\delta }: \overline{\operatorname{\mathcal{K}}} = \operatorname{\mathcal{K}}\star _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{C}}\star _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}\simeq \Delta ^1 \times \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{C}}. \]
Since $\delta $ is a cocartesian fibration, Lemma 5.2.3.17 guarantees that $\overline{\delta }$ is also a cocartesian fibration. Applying Corollary 5.3.6.8, we obtain a commutative diagram of $\infty $-categories
7.16
\begin{equation} \begin{gathered}\label{equation:diagram-of-Res} \xymatrix@R =50pt@C=50pt{ \operatorname{Fun}( \overline{\operatorname{\mathcal{K}}}/\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}}) \ar [rr] \ar [dd]^{U \circ } \ar [dr]^{T} & & \operatorname{Fun}( \operatorname{\mathcal{K}}/\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}}) \ar [dd]^{U \circ } \ar [dl] \\ & \operatorname{\mathcal{C}}& \\ \operatorname{Fun}( \overline{\operatorname{\mathcal{K}}}/\operatorname{\mathcal{C}}, \operatorname{\mathcal{E}}) \ar [rr] \ar [ur] & & \operatorname{Fun}( \operatorname{\mathcal{K}}/\operatorname{\mathcal{C}}, \operatorname{\mathcal{E}}), \ar [ul] } \end{gathered} \end{equation}
where the diagonal arrows are cartesian fibrations and the morphisms on the outside of the diagram preserve cartesian morphisms. Applying Proposition 5.1.4.21, we see that the induced map
\[ T': \operatorname{Fun}(\operatorname{\mathcal{K}}/\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})) \times _{ \operatorname{Fun}( \operatorname{\mathcal{K}}/\operatorname{\mathcal{C}}, \operatorname{\mathcal{E}}) } \operatorname{Fun}( \overline{\operatorname{\mathcal{K}}}/\operatorname{\mathcal{C}}, \operatorname{\mathcal{E}}) \rightarrow \operatorname{\mathcal{C}} \]
is also a cartesian fibration, and that the outer square of the diagram (7.16) determines a functor
\[ V: \operatorname{Fun}( \overline{\operatorname{\mathcal{K}}}/\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}}) \rightarrow \operatorname{Fun}(\operatorname{\mathcal{K}}/\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})) \times _{ \operatorname{Fun}( \operatorname{\mathcal{K}}/\operatorname{\mathcal{C}}, \operatorname{\mathcal{E}}) } \operatorname{Fun}( \overline{\operatorname{\mathcal{K}}}/\operatorname{\mathcal{C}}, \operatorname{\mathcal{E}}) \rightarrow \operatorname{\mathcal{C}} \]
which carries $T$-cartesian morphisms to $T'$-cartesian morphisms.
We next claim that $V$ is an isofibration. Fix a monomorphism of simplicial sets $i: A \hookrightarrow B$ which is also a categorical equivalence; we wish to show that every diagram
\[ \xymatrix@C =50pt@R=50pt{ A \ar [r] \ar [d] & \operatorname{Fun}( \overline{\operatorname{\mathcal{K}}}/\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}}) \ar [d]^{V} \\ B \ar [r] \ar@ {-->}[ur] & \operatorname{Fun}(\operatorname{\mathcal{K}}/\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})) \times _{ \operatorname{Fun}( \operatorname{\mathcal{K}}/\operatorname{\mathcal{C}}, \operatorname{\mathcal{E}}) } \operatorname{Fun}( \overline{\operatorname{\mathcal{K}}}/\operatorname{\mathcal{C}}, \operatorname{\mathcal{E}}) } \]
admits a solution. Note that this lifting problem determines a morphism of simplicial sets $B \rightarrow \operatorname{\mathcal{C}}$. Invoking the universal property of Proposition 4.5.9.5, we can rewrite this as a lifting problem
\[ \xymatrix@C =50pt@R=50pt{ (A \times _{\operatorname{\mathcal{C}}} \overline{\operatorname{\mathcal{K}}}) {\coprod }_{(A \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{K}}) } (B \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{K}}) \ar [r] \ar [d] & \operatorname{\mathcal{D}}\ar [d]^{U} \\ B \times _{\operatorname{\mathcal{C}}} \overline{\operatorname{\mathcal{K}}} \ar@ {-->}[ur] \ar [r] & \operatorname{\mathcal{E}}. } \]
Since $U$ is an isofibration, it will suffice to show that the left vertical map is a categorical equivalence of simplicial sets, or equivalently that the diagram
\[ \xymatrix@C =50pt@R=50pt{ A \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{K}}\ar [r] \ar [d] & B \times _{ \operatorname{\mathcal{C}}} \operatorname{\mathcal{K}}\ar [d] \\ A \times _{\operatorname{\mathcal{C}}} \overline{\operatorname{\mathcal{K}}} \ar [r] & B \times _{\operatorname{\mathcal{C}}} \overline{\operatorname{\mathcal{K}}} } \]
is a categorical pushout square (Proposition 4.5.4.11). This follows from Proposition 4.5.4.10, since the horizontal maps are categorical equivalences (Corollary 5.6.7.6).
Unwinding the definitions, we can rewrite (7.15) as a lifting problem
\[ \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{C}}_0 \ar [r]^-{ G_0} \ar [d] & \operatorname{Fun}( \overline{\operatorname{\mathcal{K}}}/\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}}) \ar [d]^{V} & \\ \operatorname{\mathcal{C}}\ar [r] \ar@ {-->}[ur] & \operatorname{Fun}(\operatorname{\mathcal{K}}/\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})) \times _{ \operatorname{Fun}( \operatorname{\mathcal{K}}/\operatorname{\mathcal{C}}, \operatorname{\mathcal{E}}) } \operatorname{Fun}( \overline{\operatorname{\mathcal{K}}}/\operatorname{\mathcal{C}}, \operatorname{\mathcal{E}}) . } \]
By virtue of Corollary 7.1.7.9, to show that this lifting problem admits a solution, it will suffice to verify the following:
- $(\ast ')$
Let $\sigma : \Delta ^ n \rightarrow \operatorname{\mathcal{C}}$ be an $n$-simplex which is not contained in $\operatorname{\mathcal{C}}_0$ and set $C = \sigma (0)$. Then $G_0(C)$ is a $V$-initial object of the $\infty $-category $\operatorname{Fun}( \overline{\operatorname{\mathcal{K}}}/\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})$.
Unwinding the definitions, we see that the functor $T^{-1} \{ C\} \rightarrow T'^{-1} \{ C\} $ induced by $V$ can be identified with the restriction map
\[ V_ C: \operatorname{Fun}( \operatorname{\mathcal{K}}_{C}^{\triangleright }, \operatorname{\mathcal{D}}) \rightarrow \operatorname{Fun}( \operatorname{\mathcal{K}}_ C, \operatorname{\mathcal{D}}) \times _{ \operatorname{Fun}( \operatorname{\mathcal{K}}_ C, \operatorname{\mathcal{E}}) } \operatorname{Fun}( \operatorname{\mathcal{K}}_ C^{\triangleright }, \operatorname{\mathcal{E}}). \]
Combining assumption $(\ast )$ with Proposition 7.1.7.4, we see that $G_0( C )$ is a $V_ C$-initial object of the $\infty $-category $\operatorname{Fun}( K_{C}^{\triangleright }, \operatorname{\mathcal{D}})$. Proposition 7.1.5.19 then guarantees that $G_0(C)$ is also $V$-initial when regarded as an object of the $\infty $-category $\operatorname{Fun}( \overline{\operatorname{\mathcal{K}}}/\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})$.
$\square$
Lemma 7.3.4.6. Let $\delta : \operatorname{\mathcal{K}}\rightarrow \operatorname{\mathcal{C}}$ be a cocartesian fibration of simplicial sets, let $U: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{E}}$ be an isofibration of $\infty $-categories, and suppose we are given a lifting problem
7.17
\begin{equation} \begin{gathered}\label{equation:fiberwise-relative-Kan-general2} \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{K}}\ar [r]^-{F_0} \ar [d] & \operatorname{\mathcal{D}}\ar [d]^{U} \\ \operatorname{\mathcal{K}}\star _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}\ar@ {-->}[ur]^{F} \ar [r]^-{G} & \operatorname{\mathcal{E}}} \end{gathered} \end{equation}
with the following property:
- $(\ast )$
For each vertex $C \in \operatorname{\mathcal{C}}$, the induced lifting problem
\[ \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{K}}_ C \ar [r] \ar [d] & \operatorname{\mathcal{D}}\ar [d]^{U} \\ \operatorname{\mathcal{K}}_ C \star _{ \{ C\} } \{ C\} \ar@ {-->}[ur]^{ F_ C } \ar [r] & \operatorname{\mathcal{E}}} \]
admits a solution $F_ C: \operatorname{\mathcal{K}}_{C}^{\triangleright } \rightarrow \operatorname{\mathcal{D}}$ which is a $U$-colimit diagram.
Then (7.17) admits a solution $F: \operatorname{\mathcal{K}}\star _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ satisfying $F|_{ X_{C}^{\triangleright } } = F_ C$ for each vertex $C \in \operatorname{\mathcal{C}}$.
Proof.
Let $\operatorname{\mathcal{C}}_0 = \operatorname{sk}_0(\operatorname{\mathcal{C}})$ be the $0$-skeleton of $\operatorname{\mathcal{C}}$ and set $\operatorname{\mathcal{K}}_0 = \operatorname{\mathcal{C}}_0 \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{K}}= {\coprod }_{C \in \operatorname{\mathcal{C}}} \operatorname{\mathcal{K}}_ C$, so that we can amalgamate $F_0$ with the morphisms $\{ F_ C \} _{C \in \operatorname{\mathcal{C}}}$ to obtain a map $F_1: \operatorname{\mathcal{K}}{\coprod }_{ \operatorname{\mathcal{K}}_0 } ( \operatorname{\mathcal{K}}_0 \star _{\operatorname{\mathcal{C}}_0} \operatorname{\mathcal{C}}_0 ) \rightarrow \operatorname{\mathcal{D}}$. To prove Lemma 7.3.4.6, we must show that the lifting problem
\[ \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{K}}{\coprod }_{ \operatorname{\mathcal{K}}_0 } (\operatorname{\mathcal{K}}_0 \star _{\operatorname{\mathcal{C}}_0} \operatorname{\mathcal{C}}_0 ) \ar [r]^-{F_1} \ar [d] & \operatorname{\mathcal{D}}\ar [d]^{U} \\ \operatorname{\mathcal{C}}\star _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}\ar@ {-->}[ur] \ar [r]^-{G} & \operatorname{\mathcal{E}}} \]
has a solution, which is a special case of Lemma 7.3.4.5.
$\square$
Proposition 7.3.4.7. Let $\delta : \operatorname{\mathcal{K}}\rightarrow \operatorname{\mathcal{C}}$ be a cocartesian fibration of $\infty $-categories, let $U: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{E}}$ be an isofibration of $\infty $-categories, and suppose we are given a lifting problem
7.18
\begin{equation} \begin{gathered}\label{equation:existence-Kan-fiberwise} \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{K}}\ar [r]^-{ F_0 } \ar [d] & \operatorname{\mathcal{D}}\ar [d]^{U} \\ \operatorname{\mathcal{K}}\star _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}\ar@ {-->}[ur]^{F} \ar [r] & \operatorname{\mathcal{E}}. } \end{gathered} \end{equation}
The following conditions are equivalent:
- $(1)$
The lifting problem (7.18) has a solution $F: \operatorname{\mathcal{K}}\star _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ which is $U$-left Kan extended from $\operatorname{\mathcal{K}}$.
- $(2)$
For every object $C \in \operatorname{\mathcal{C}}$, the associated lifting problem
\[ \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{K}}_{C} \ar [r] \ar [d] & \operatorname{\mathcal{D}}\ar [d]^{U} \\ \operatorname{\mathcal{K}}_{C}^{\triangleright } \ar@ {-->}[ur] \ar [r] & \operatorname{\mathcal{E}}} \]
has a solution $\operatorname{\mathcal{K}}_{C}^{\triangleright } \rightarrow \operatorname{\mathcal{D}}$ which is a $U$-colimit diagram.
Proof.
Combine Lemma 7.3.4.6 with Proposition 7.3.4.3.
$\square$
Corollary 7.3.4.8. Let $\delta : \operatorname{\mathcal{K}}\rightarrow \operatorname{\mathcal{C}}$ be a cocartesian fibration of $\infty $-categories and let $F_0: \operatorname{\mathcal{K}}\rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty $-categories. The following conditions are equivalent:
- $(1)$
There exists a functor $F: \operatorname{\mathcal{K}}\star _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ which is left Kan extended from $\operatorname{\mathcal{K}}$ and satisfies $F|_{\operatorname{\mathcal{K}}} = F_0$.
- $(2)$
For every object $C \in \operatorname{\mathcal{C}}$, the diagram
\[ \operatorname{\mathcal{K}}_{C} = \{ C\} \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{K}}\hookrightarrow \operatorname{\mathcal{K}}\xrightarrow {F_0} \operatorname{\mathcal{D}} \]
admits a colimit in the $\infty $-category $\operatorname{\mathcal{D}}$.
Proof of Proposition 7.3.4.4.
Let $\delta : \operatorname{\mathcal{K}}\rightarrow \operatorname{\mathcal{C}}$ be a cocartesian fibration of $\infty $-categories and let $F_0: \operatorname{\mathcal{K}}\rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty $-categories. Suppose that, for every object $C \in \operatorname{\mathcal{C}}$, the diagram
\[ \operatorname{\mathcal{K}}_{C} = \{ C\} \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{K}}\hookrightarrow \operatorname{\mathcal{K}}\xrightarrow {F_0} \operatorname{\mathcal{D}} \]
has a colimit in the $\infty $-category $\operatorname{\mathcal{D}}$. Applying Corollary 7.3.4.8, we deduce that there exists a functor $F: \operatorname{\mathcal{K}}\star _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ which is left Kan extended from $\operatorname{\mathcal{K}}$ and satisfies $F|_{\operatorname{\mathcal{K}}} = F_0$. Applying Proposition 7.3.1.16, we see that the restriction $F|_{\operatorname{\mathcal{C}}}$ is a left Kan extension of $F_0$ along $\delta $.
$\square$