# Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$

### 7.3.5 Existence of Kan Extensions

Our goal in this section is to establish the following existence criterion for Kan extensions:

Proposition 7.3.5.1. Let $\operatorname{\mathcal{C}}$ and $\operatorname{\mathcal{D}}$ be $\infty$-categories, and suppose we are given diagrams $\delta : K \rightarrow \operatorname{\mathcal{C}}$ and $F_0: K \rightarrow \operatorname{\mathcal{D}}$. Then:

• The diagram $F_0$ admits a left Kan extension along $\delta$ if and only if, for every object $C \in \operatorname{\mathcal{C}}$, the diagram

$K_{/C} = K \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}_{/C} \rightarrow K \xrightarrow {F_0} \operatorname{\mathcal{D}}$

has a colimit in the $\infty$-category $\operatorname{\mathcal{D}}$.

• The diagram $F_0$ admits a right Kan extension along $\delta$ if and only if, for every object $C \in \operatorname{\mathcal{C}}$, the diagram

$K_{C/} = K \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}_{C/} \rightarrow K \xrightarrow {F_0} \operatorname{\mathcal{D}}$

has a limit in the $\infty$-category $\operatorname{\mathcal{D}}$.

Corollary 7.3.5.2. Let $\operatorname{\mathcal{C}}$ and $\operatorname{\mathcal{D}}$ be $\infty$-categories and let $\delta : K \rightarrow \operatorname{\mathcal{C}}$ be a diagram. Assume that, for every object $C \in \operatorname{\mathcal{C}}$, the $\infty$-category $\operatorname{\mathcal{D}}$ admits $K_{/C}$-indexed colimits. Then every diagram $F_0: K \rightarrow \operatorname{\mathcal{D}}$ admits a left Kan extension along $\delta$.

Corollary 7.3.5.3. Let $\operatorname{\mathcal{C}}$ be a category, let $\mathscr {G}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$ be a diagram of simplicial sets, let $\operatorname{\mathcal{D}}$ be an $\infty$-category, and let $F_0: \underset { \longrightarrow }{\mathrm{holim}}( \mathscr {G} ) \rightarrow \operatorname{\mathcal{D}}$ be a diagram. The following conditions are equivalent:

$(1)$

The diagram $F_0$ admits a left Kan extension along the projection map $U: \underset { \longrightarrow }{\mathrm{holim}}( \mathscr {G} ) \rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$.

$(2)$

For every object $C \in \operatorname{\mathcal{C}}$, the diagram

$\mathscr {G}(C) \simeq \{ C\} \times _{ \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) } \underset { \longrightarrow }{\mathrm{holim}}( \mathscr {G} ) \hookrightarrow \underset { \longrightarrow }{\mathrm{holim}}( \mathscr {G} ) \xrightarrow {F_0} \operatorname{\mathcal{D}}$

admits a colimit in the $\infty$-category $\operatorname{\mathcal{D}}$.

Proof. For each object $C \in \operatorname{\mathcal{C}}$, the inclusion map

$\mathscr {G}(C) \hookrightarrow \operatorname{N}_{\bullet }( \operatorname{\mathcal{C}}_{/C} ) \times _{ \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) } \underset { \longrightarrow }{\mathrm{holim}}(\mathscr {G} ) \simeq \underset { \longrightarrow }{\mathrm{holim}}( \mathscr {G}|_{ \operatorname{\mathcal{C}}_{/C} } )$

is right anodyne (Example 7.2.3.11), and therefore right cofinal. The desired result now follows by combining Proposition 7.3.5.1 with Corollary 7.2.2.10. $\square$

Remark 7.3.5.4. In the situation of Corollary 7.3.5.3, suppose we are given a functor $F: \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{D}}$ and a natural trnasformation $\beta : F_0 \rightarrow F \circ U$. Then $\beta$ exhibits $F$ as a left Kan extension of $F$ along $U$ if and only if, for every object $C \in \operatorname{\mathcal{C}}$, the induced natural transformation $\beta _{C}: F_0 |_{ \mathscr {G}(C) } \rightarrow \underline{ F(C) }$ exhibits $F(C)$ as a colimit of the diagram $F_0 |_{ \mathscr {G}(C)}$

In the special case where $\delta$ is a cocartesian fibration, Proposition 7.3.5.1 is essentially a reformulation of Proposition 7.3.4.4. We will proceed in general by reducing to this special case (see for a similar approach). With an eye toward future applications, we first consider a variant of Proposition 7.3.5.1 in the setting of relative Kan extensions.

Proposition 7.3.5.5. Let $\operatorname{\mathcal{C}}$ be an $\infty$-category, let $\operatorname{\mathcal{C}}^{0} \subseteq \operatorname{\mathcal{C}}$ be a full subcategory, let $U: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{E}}$ be an isofibration of $\infty$-categories, and suppose we are given a lifting problem

7.18
$$\begin{gathered}\label{equation:relative-Kan-extension-existence} \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{C}}^{0} \ar [r]^-{F_0} \ar [d] & \operatorname{\mathcal{D}}\ar [d]^{U} \\ \operatorname{\mathcal{C}}\ar [r]^-{G} \ar@ {-->}[ur]^{F} & \operatorname{\mathcal{E}}} \end{gathered}$$

Then (7.18) admits a solution $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ which is $U$-left Kan extended from $\operatorname{\mathcal{C}}^{0}$ if and only if, for every object $C \in \operatorname{\mathcal{C}}$, the following condition is satisfied:

$(\ast _ C)$

The induced lifting problem

7.19
$$\begin{gathered}\label{equation:relative-Kan-extension-existence4} \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{C}}^{0}_{/C} \ar [rr] \ar [d] & & \operatorname{\mathcal{D}}\ar [d]^{U} \\ ( \operatorname{\mathcal{C}}^0_{/C})^{\triangleright } \ar [r] \ar@ {-->}[urr]^{ F_ C } & \operatorname{\mathcal{C}}\ar [r]^-{G} & \operatorname{\mathcal{E}}} \end{gathered}$$

admits a solution $F_{C}: ( \operatorname{\mathcal{C}}^{0}_{/C})^{\triangleright } \rightarrow \operatorname{\mathcal{D}}$ which is a $U$-colimit diagram.

Proof. Assume that condition $(\ast _ C)$ is satisfied for every object $C \in \operatorname{\mathcal{C}}$; we will show that the lifting problem (7.18) admits a solution $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ which is $U$-left Kan extended from $\operatorname{\mathcal{C}}^{0}$ (the converse follows immediately from the definitions). Let $\operatorname{\mathcal{K}}$ denote the oriented fiber product $\operatorname{\mathcal{C}}^{0} \operatorname{\vec{\times }}_{ \operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}$: that is, the full subcategory of $\operatorname{Fun}( \Delta ^1, \operatorname{\mathcal{C}})$ spanned by those morphisms $e: X \rightarrow Y$ of $\operatorname{\mathcal{C}}$ such that $X$ belongs to the subcategory $\operatorname{\mathcal{C}}^{0}$. Let $\pi : \operatorname{\mathcal{K}}\rightarrow \operatorname{\mathcal{C}}^{0}$ and $\pi ': \operatorname{\mathcal{K}}\rightarrow \operatorname{\mathcal{C}}$ be the evaluation maps, given on objects by $\pi (e) = X$ and $\pi '(e) = Y$, respectively. We then have a natural transformation $\alpha : \pi \rightarrow \pi '$ (which carries each morphism $e: X \rightarrow Y$ to itself). Regarding $\operatorname{\mathcal{K}}$ as an object of $(\operatorname{Set_{\Delta }})_{/\operatorname{\mathcal{C}}}$ via the functor $\pi '$, let $\operatorname{\mathcal{K}}\star _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}$ denote the relative join of Construction 5.2.3.1. We will write $\iota _{\operatorname{\mathcal{K}}}: \operatorname{\mathcal{K}}\hookrightarrow \operatorname{\mathcal{K}}\star _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}$ and $\iota _{\operatorname{\mathcal{C}}}: \operatorname{\mathcal{C}}\hookrightarrow \operatorname{\mathcal{K}}\star _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}$ for the inclusion maps, and $\iota _{\operatorname{\mathcal{C}}^{0} }$ for the restriction of $\iota _{\operatorname{\mathcal{C}}}$ to the full subcategory $\operatorname{\mathcal{C}}^{0} \subseteq \operatorname{\mathcal{C}}$. The natural transformation $\alpha$ then determines a functor $S: \operatorname{\mathcal{K}}\star _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{C}}$ satisfying $S \circ \iota _{\operatorname{\mathcal{K}}} = \pi$ and $S \circ \iota _{\operatorname{\mathcal{C}}} = \operatorname{id}_{\operatorname{\mathcal{C}}}$. Consider the lifting problem

7.20
$$\begin{gathered}\label{equation:relative-Kan-extension-existence2} \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{K}}\ar [rr]^{ F_0 \circ \pi } \ar [d] & & \operatorname{\mathcal{D}}\ar [d]^{U} \\ \operatorname{\mathcal{K}}\star _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}\ar [r]^-{S} \ar [urr]^{ \overline{F} } & \operatorname{\mathcal{C}}\ar [r]^-{G} & \operatorname{\mathcal{E}}. } \end{gathered}$$

For each object $C \in \operatorname{\mathcal{C}}$, write $\operatorname{\mathcal{K}}_{C}$ for the fiber $\pi '^{-1} \{ C\}$, so that (7.20) restricts to a lifting problem

7.21
$$\begin{gathered}\label{equation:relative-Kan-extension-existence3} \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{K}}_{C} \ar [r] \ar [d] & \operatorname{\mathcal{D}}\ar [d]^{U} \\ \operatorname{\mathcal{K}}_{C} \star _{ \{ C \} } \{ C\} \ar@ {-->}[ur]^{ \overline{F}_ C } \ar [r] & \operatorname{\mathcal{E}}. } \end{gathered}$$

Note that $\operatorname{\mathcal{K}}_{C}$ can be identified with the oriented fiber product $\operatorname{\mathcal{C}}^{0} \operatorname{\vec{\times }}_{\operatorname{\mathcal{C}}} \{ C\}$. Moreover, after precomposing with the slice diagonal equivalence $\operatorname{\mathcal{C}}^{0}_{/C} \rightarrow \operatorname{\mathcal{C}}^{0} \operatorname{\vec{\times }}_{\operatorname{\mathcal{C}}} \{ C\}$ of Theorem 4.6.4.17, (7.21) recovers the lifting problem (7.19). Combining assumption $(\ast _ C)$ with Proposition 7.2.2.9, we deduce that the lifting problem (7.21) admits a solution $\overline{F}_{C}: \operatorname{\mathcal{K}}_{C}^{\triangleright } \rightarrow \operatorname{\mathcal{D}}$ which is a $U$-colimit diagram. Since $\pi ': \operatorname{\mathcal{K}}\rightarrow \operatorname{\mathcal{C}}$ is a cocartesian fibration (Corollary 5.3.7.3), Proposition 7.3.4.7 guarantees that the lifting problem (7.20) admits a solution $\overline{F}: \operatorname{\mathcal{K}}\star _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ which is $U$-left Kan extended from $\operatorname{\mathcal{K}}$.

Note that the diagonal inclusion $\operatorname{\mathcal{C}}\hookrightarrow \operatorname{Fun}( \Delta ^1, \operatorname{\mathcal{C}})$ restricts to a map $\delta : \operatorname{\mathcal{C}}^{0} \hookrightarrow \operatorname{\mathcal{K}}$. Let $\beta$ denote the composite map

$\Delta ^1 \times \operatorname{\mathcal{C}}^{0} \simeq \operatorname{\mathcal{C}}^{0} \star _{ \operatorname{\mathcal{C}}^{0} } \operatorname{\mathcal{C}}^{0} \xrightarrow { \delta \star \operatorname{id}} \operatorname{\mathcal{K}}\star _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}},$

which we regard as a natural transformation from $\iota _{\operatorname{\mathcal{K}}} \circ \delta$ to $\iota _{\operatorname{\mathcal{C}}^{0}}$. This natural transformation carries each object $X \in \operatorname{\mathcal{C}}^{0}$ to a morphism $\beta _{X}: \iota _{\operatorname{\mathcal{K}}}( \operatorname{id}_ X ) \rightarrow \iota _{\operatorname{\mathcal{C}}}(X)$ in the $\infty$-category $\operatorname{\mathcal{K}}\star _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}$. Since $\operatorname{id}_ X$ is a final object of the $\infty$-category $\operatorname{\mathcal{K}}_{X} \simeq \operatorname{\mathcal{C}}^{0} \operatorname{\vec{\times }}_{ \operatorname{\mathcal{C}}^{0} } \{ X\}$ (Proposition 4.6.7.22) and $\overline{F}|_{ \operatorname{\mathcal{K}}_{X}^{\triangleright } }$ is a $U$-colimit diagram (Proposition 7.3.4.3), the image $\overline{F}( \beta _ X )$ is a $U$-cocartesian morphism of $\operatorname{\mathcal{D}}$ (Corollary 7.2.2.5). Since $U( \overline{F}(\beta _ X) ) = \operatorname{id}_{ G(X) }$ is an isomorphism in $\operatorname{\mathcal{E}}$, we conclude that $\overline{F}( \beta _ X )$ is an isomorphism in $\operatorname{\mathcal{D}}$. Applying Corollary 4.4.5.9, we deduce that $\overline{F}( \beta )$ can be lifted to an isomorphism $F \rightarrow \overline{F} \circ \iota _{\operatorname{\mathcal{C}}}$ in the $\infty$-category $\operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})$, where $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ is a solution to the lifting problem (7.18). We will show $\overline{F} \circ \iota _{\operatorname{\mathcal{C}}}$ is $U$-left Kan extended from $\operatorname{\mathcal{C}}^{0}$, so that $F$ is also $U$-left Kan extended from $\operatorname{\mathcal{C}}^{0}$ (Remark 7.3.3.17).

Fix an object $C \in \operatorname{\mathcal{C}}$, let $c: ( \operatorname{\mathcal{C}}^{0}_{/C} )^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ be the slice contraction map and set $T^{+} = \iota _{\operatorname{\mathcal{C}}} \circ c$; we wish to show that $T^{+}: (\operatorname{\mathcal{C}}^{0}_{/C} )^{\triangleright } \rightarrow \operatorname{\mathcal{D}}$ is a $U$-colimit diagram. Let $\psi : \operatorname{\mathcal{C}}_{/C} \hookrightarrow \operatorname{\mathcal{C}}\operatorname{\vec{\times }}_{\operatorname{\mathcal{C}}} \{ C\}$ be the slice diagonal of Construction 4.6.4.13. Note that $\psi$ is an equivalence of right fibrations over $\operatorname{\mathcal{C}}$ (Theorem 4.6.4.17 and Proposition 5.1.7.5), and therefore restricts to an equivalence of full subcategories $\psi _{0}: \operatorname{\mathcal{C}}^{0}_{/C} \rightarrow \operatorname{\mathcal{C}}^{0} \operatorname{\vec{\times }}_{\operatorname{\mathcal{C}}} \{ C\} = \operatorname{\mathcal{K}}_{C}$. Let $T^{-}$ denote the composite functor

$(\operatorname{\mathcal{C}}^{0}_{/C})^{\triangleright } \xrightarrow { \psi _0^{\triangleright } } \operatorname{\mathcal{K}}_{C}^{\triangleright } = \operatorname{\mathcal{K}}_{C} \star _{ \{ C\} } \{ C\} \hookrightarrow \operatorname{\mathcal{K}}\star _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}.$

Because $\overline{F}$ is $U$-left Kan extended from $\operatorname{\mathcal{K}}$, the $\overline{F}|_{ \operatorname{\mathcal{K}}_{C}^{\triangleright } }$ is a $U$-colimit diagram in $\operatorname{\mathcal{D}}$ (Proposition 7.3.4.3). Since the functor $\psi _{0}$ is right cofinal (Corollary 7.2.1.13), the functor $\overline{F} \circ T^{-}$ is also a $U$-colimit diagram (Corollary 7.2.2.2). Beware that the functors $T^{-}, T^{+}: (\operatorname{\mathcal{C}}_{/C}^{0})^{\triangleright } \rightarrow \operatorname{\mathcal{K}}\star _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}$ are not isomorphic: if $\widetilde{X}$ is an object of the $\infty$-category $\operatorname{\mathcal{C}}_{/C}$ given by a morphism $e: X \rightarrow C$ in $\operatorname{\mathcal{C}}$, then we have $T^{+}( \widetilde{X} ) = \iota _{\operatorname{\mathcal{C}}}(X)$ and $T^{-}( \widetilde{X} ) = \iota _{\operatorname{\mathcal{K}}}( e )$. However, we will show that the functors $\overline{F} \circ T^{-}$ and $\overline{F} \circ T^{+}$ are isomorphic when regarded as objects of the $\infty$-category $\operatorname{Fun}( ( \operatorname{\mathcal{C}}^{0}_{/C} )^{\triangleright }, \operatorname{\mathcal{D}})$, so that $\overline{F} \circ G^{+}$ a $U$-colimit diagram by virtue of Proposition 7.1.5.13.

Let $b: (\operatorname{\mathcal{C}}^{0}_{/C})^{\triangleright } \rightarrow \Delta ^1$ be the map carrying $\operatorname{\mathcal{C}}^{0}_{/C}$ to the vertex $0 \in \Delta ^1$ and the cone point of $(\operatorname{\mathcal{C}}^{0}_{/C})^{\triangleright }$ to the vertex $1 \in \Delta ^1$. Note that the map $( b, c ): (\operatorname{\mathcal{C}}^{0}_{/C})^{\triangleright } \rightarrow \Delta ^1 \times \operatorname{\mathcal{C}}$ factors through the full subcategory

$\operatorname{\mathcal{C}}^0 \star _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}\subseteq \operatorname{\mathcal{C}}\star _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}\subseteq \Delta ^1 \times \operatorname{\mathcal{C}}.$

We let $T: (\operatorname{\mathcal{C}}^0_{/C})^{\triangleright } \rightarrow \operatorname{\mathcal{K}}\star _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}$ denote the composite functor

$(\operatorname{\mathcal{C}}^0_{/C})^{\triangleright } \xrightarrow { (b, c) } \operatorname{\mathcal{C}}^0 \star _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}\xrightarrow { \delta \star \operatorname{id}} \operatorname{\mathcal{K}}\star _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}.$

Concretely, the functor $T$ carries the cone point of $(\operatorname{\mathcal{C}}^{0}_{/C})^{\triangleright }$ to the object $\iota _{\operatorname{\mathcal{C}}}(C) \in \operatorname{\mathcal{K}}\star _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}$, and carries an object $(e: X \rightarrow C)$ of $\operatorname{\mathcal{C}}^{0}_{/C}$ to the object $\iota _{\operatorname{\mathcal{K}}}( \operatorname{id}_ X) \in \operatorname{\mathcal{K}}\star _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}$. We will complete the proof by verifying the following:

$(a)$

There exists a natural transformation of functors $\gamma ^{+}: T \rightarrow T^{+}$, which carries the cone point of $( \operatorname{\mathcal{C}}_{/C}^{0} )^{\triangleright }$ to the identity morphism $\iota _{\operatorname{\mathcal{C}}}( \operatorname{id}_ C )$, and carries each object $(e: X \rightarrow C) \in \operatorname{\mathcal{C}}_{/C}^{0}$ to the morphism $\beta _{X}$.

$(b)$

There exists a natural transformation of functors $\gamma ^{-}: T \rightarrow T^{-}$, which carries the cone point of $( \operatorname{\mathcal{C}}_{/C}^{0} )^{\triangleright }$ to the identity morphism $\iota _{\operatorname{\mathcal{C}}}( \operatorname{id}_ C )$ and carries each object $(e: X \rightarrow C)$ to the morphism of $\operatorname{\mathcal{K}}\subseteq \operatorname{Fun}(\Delta ^1, \operatorname{\mathcal{C}})$ given by a commutative diagram

$\xymatrix@R =50pt@C=50pt{ X \ar [r]^-{ \operatorname{id}_ X } \ar [d]^{\operatorname{id}_ X} & X \ar [d]^{e} \\ X \ar [r]^-{e} & C }$

in the $\infty$-category $\operatorname{\mathcal{C}}$.

Assuming this has been done, we observe that the natural transformations $\overline{F}( \gamma ^{-} )$ and $\overline{F}( \gamma ^{+} )$ carry each object of $( \operatorname{\mathcal{C}}_{/C }^{0} )^{\triangleright }$ to an isomorphism in the $\infty$-category $\operatorname{\mathcal{D}}$ and therefore supply isomorphisms $\overline{F} \circ T^{-} \xleftarrow {\sim } \overline{F} \circ T \xrightarrow {|sim} \overline{F} \circ T^{+}$ in the $\infty$-category $\operatorname{Fun}( ( \operatorname{\mathcal{C}}^{0}_{/C} )^{\triangleright }, \operatorname{\mathcal{D}})$.

We begin by constructing the natural transformation $\gamma ^{+}$. Let $b': ( \operatorname{\mathcal{C}}_{/C}^{0} )^{\triangleright } \rightarrow \Delta ^1$ be the constant map taking the value $1$, so that there is a unique natural transformation $\xi : b \rightarrow b'$. Note that $\xi$ induces a natural transformation from $(b,c)$ to $(b',c)$ in the $\infty$-category $\operatorname{Fun}( ( \operatorname{\mathcal{C}}_{/C}^{0} )^{\triangleright }, \operatorname{\mathcal{C}}^0 \star _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}})$. Composing with the map $( \delta \star \operatorname{id}): \operatorname{\mathcal{C}}^0 \star _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{K}}\star _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}$, we obtain a natural transformation $\gamma ^{+}: T \rightarrow T^{+}$ satisfying the requirements of $(a)$.

We now construct the natural transformation $\gamma ^{-}$. Note that $T$ and $T_{-}$ both carry $\operatorname{\mathcal{C}}^{0}_{/C}$ into $\operatorname{\mathcal{K}}$ and the cone point of $(\operatorname{\mathcal{C}}^{0}_{/C})^{\triangleright }$ to the object $\iota _{\operatorname{\mathcal{C}}}(C)$ and can therefore be identified with functors $T_{0}, T^{-}_{0}: \operatorname{\mathcal{C}}^{0}_{/C} \rightarrow \operatorname{\mathcal{K}}\times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}_{/C}$. Let $\sigma$ be an $n$-simplex of the product $\Delta ^1 \times \operatorname{\mathcal{C}}^{0}_{/C}$, which we identify with a pair $(\epsilon , \tau )$ where $\epsilon : [n] \rightarrow [1]$ is a nondecreasing function and $\tau : \Delta ^{n+1} \rightarrow \operatorname{\mathcal{C}}$ has the property that $\tau |_{\Delta ^ n}$ factors through $\operatorname{\mathcal{C}}^{0}$ and $\tau ( n+1 ) = C$. Let $\rho : \Delta ^1 \times \Delta ^{n} \rightarrow \Delta ^{n+1}$ and $\rho ': \Delta ^{n+1} \rightarrow \Delta ^{n+1}$ denote the maps given on vertices by the formulae

$\rho (i,j) = \begin{cases} n+1 & \text{ if i = 1 = \epsilon (j) } \\ j & \text{ otherwise }\end{cases} \quad \quad \rho '(j) = \begin{cases} j & \text{ if j \leq n and \epsilon (j) = 0} \\ n+1 & \text{otherwise}. \end{cases}$

Then $(\rho \circ \tau ): \Delta ^1 \times \Delta ^ n \rightarrow \operatorname{\mathcal{C}}$ can be identified with an $n$-simplex of the simplicial set $\operatorname{\mathcal{K}}\subseteq \operatorname{Fun}(\Delta ^1,\operatorname{\mathcal{C}})$, so that $( \rho \circ \tau , \rho ' \circ \tau )$ is an $n$-simplex of $\operatorname{\mathcal{K}}\times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}_{/C}$. The construction $\sigma \mapsto ( \rho \circ \tau , \rho ' \circ \tau )$ depends functorially on $[n]$, and therefore determines a morphism of simplicial sets

$\Delta ^1 \times \operatorname{\mathcal{C}}^{0}_{/C} \rightarrow \operatorname{\mathcal{K}}\times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}_{/C}$

We can identify this map with a natural transformation $\gamma ^{-}_{0}: T_0 \rightarrow T^{-}_{0}$, which then determines a natural transformation $\gamma ^{-}: T \rightarrow T^{-}$ satisfying the requirements of $(b)$. $\square$

Example 7.3.5.6. Let $U: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{E}}$ be an isofibration of $\infty$-categories and let $G: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{E}}$ be a functor. Suppose that, for every object $C \in \operatorname{\mathcal{C}}$, the image $G(C) \in \operatorname{\mathcal{E}}$ can be lifted to a $U$-initial object of $\operatorname{\mathcal{D}}$. Applying Proposition 7.3.5.5 (in the special case $\operatorname{\mathcal{C}}^{0} = \emptyset$), we deduce that $G$ can be lifted to a functor $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ which carries each object of $\operatorname{\mathcal{C}}$ to a $U$-initial object of $\operatorname{\mathcal{D}}$ (see Example 7.3.3.6).

Corollary 7.3.5.7. Let $U: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{C}}$ be a cartesian fibration of $\infty$-categories. Suppose that, for every object $C \in \operatorname{\mathcal{C}}$, the fiber $\operatorname{\mathcal{D}}_{C} = \{ C\} \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{D}}$ has an initial object. Then the $\infty$-category $\operatorname{Fun}_{ / \operatorname{\mathcal{C}}}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{E}})$ has an initial object. Moreover, an object $F \in \operatorname{Fun}_{ / \operatorname{\mathcal{C}}}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})$ is initial if and only if it satisfies the following condition:

$(\ast )$

For each object $C \in \operatorname{\mathcal{C}}$, the image $F(C)$ is an initial object of $\operatorname{\mathcal{D}}_{C}$.

Proof. Since $U$ is a cartesian fibration, an object $D \in \operatorname{\mathcal{D}}$ is $U$-initial if and only if it is initial when viewed as an object of the $\infty$-category $\operatorname{\mathcal{D}}_{C}$ for $C = U(D)$ (Corollary 7.1.4.21). It follows from Example 7.3.5.6 that there exists a functor $F \in \operatorname{Fun}_{ / \operatorname{\mathcal{C}}}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})$ which satisfies condition $(\ast )$. Proposition 7.1.6.9 then guarantees that $F$ is an initial object of $\operatorname{Fun}_{ / \operatorname{\mathcal{C}}}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})$. Any other initial object of $\operatorname{Fun}_{ /\operatorname{\mathcal{C}}}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})$ is isomorphic to $F$, and therefore also satisfies condition $(\ast )$. $\square$

Corollary 7.3.5.8. Let $\operatorname{\mathcal{C}}$ be an $\infty$-category, let $\operatorname{\mathcal{C}}^{0} \subseteq \operatorname{\mathcal{C}}$ be a full subcategory, let $F_0: \operatorname{\mathcal{C}}^{0} \rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty$-categories. Then:

• The functor $F_0$ admits a left Kan extension $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ if and only if, for every object $C \in \operatorname{\mathcal{C}}$, the diagram

$\operatorname{\mathcal{C}}^{0} \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}_{/C} \rightarrow \operatorname{\mathcal{C}}^{0} \xrightarrow {F_0} \operatorname{\mathcal{D}}$

has a colimit in the $\infty$-category $\operatorname{\mathcal{D}}$.

• The functor $F_0$ admits a right Kan extension $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ if and only if, for every object $C \in \operatorname{\mathcal{C}}$, the diagram

$\operatorname{\mathcal{C}}^{0} \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}_{C/} \rightarrow \operatorname{\mathcal{C}}^{0} \xrightarrow {F_0} \operatorname{\mathcal{D}}$

has a limit in the $\infty$-category $\operatorname{\mathcal{D}}$.

Proof. The first assertion follows by applying the criterion of Proposition 7.3.5.5 in the special case $\operatorname{\mathcal{E}}= \Delta ^0$, and the second assertion follows by a similar argument. $\square$

Corollary 7.3.5.9. Let $\operatorname{\mathcal{C}}$ be an $\infty$-category, let $\operatorname{\mathcal{C}}^{0} \subseteq \operatorname{\mathcal{C}}$ be a coreflective full subcategory and let $U: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{E}}$ be an isofibration of $\infty$-categories. Suppose we are given a lifting problem

7.26
$$\begin{gathered}\label{equation:relative-Kan-extension-coreflective} \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{C}}^{0} \ar [r]^-{F_0} \ar [d] & \operatorname{\mathcal{D}}\ar [d]^{U} \\ \operatorname{\mathcal{C}}\ar [r]^-{G} \ar@ {-->}[ur]^{F} & \operatorname{\mathcal{E}}. } \end{gathered}$$

The following conditions are equivalent:

$(1)$

The lifting problem (7.26) admits a solution $F$ which is $U$-left Kan extended from $\operatorname{\mathcal{C}}^{0}$.

$(2)$

For every morphism $u: C' \rightarrow C$ of $\operatorname{\mathcal{C}}$ which exhibits $C'$ as a $\operatorname{\mathcal{C}}^{0}$-coreflection of $\operatorname{\mathcal{C}}$, the image $G(u)$ can be lifted to a $U$-cocartesian morphism $F_0( C' ) \rightarrow D$ of $\operatorname{\mathcal{D}}$.

Proof. Fix an object $C \in \operatorname{\mathcal{C}}$, and choose a morphism $u: C' \rightarrow C$ which exhibits $C'$ as a $\operatorname{\mathcal{C}}^{0}$-coreflection of $\operatorname{\mathcal{C}}$. By virtue of Proposition 7.3.5.5, it will suffice to show that the lifting problem

$\xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{C}}^{0}_{/C} \ar [rr] \ar [d] & & \operatorname{\mathcal{D}}\ar [d]^{U} \\ ( \operatorname{\mathcal{C}}^0_{/C})^{\triangleright } \ar [r] \ar@ {-->}[urr]^{ F_ C } & \operatorname{\mathcal{C}}\ar [r]^-{G} & \operatorname{\mathcal{E}}}$

admits a solution which is a $U$-colimit diagram if and only if $G(u)$ can be lifted to a $U$-cocartesian morphism $F_0(C') \rightarrow D$. This follows from Corollary 7.2.2.14, since $u$ is final when viewed as an object of the $\infty$-category $\operatorname{\mathcal{C}}^{0}_{/C}$. $\square$

Corollary 7.3.5.10. Let $\operatorname{\mathcal{C}}$ be an $\infty$-category, let $\operatorname{\mathcal{C}}^{0} \subseteq \operatorname{\mathcal{C}}$ be a coreflective full subcategory, and let $U: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{E}}$ be a cocartesian fibration of $\infty$-categories. Then every lifting problem

$\xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{C}}^{0} \ar [r]^-{F_0} \ar [d] & \operatorname{\mathcal{D}}\ar [d]^{U} \\ \operatorname{\mathcal{C}}\ar [r]^-{G} \ar@ {-->}[ur]^{F} & \operatorname{\mathcal{E}}}$

admits a solution $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ which is $U$-left Kan extended from $\operatorname{\mathcal{C}}^{0}$.

Corollary 7.3.5.11. Let $\operatorname{\mathcal{C}}$ be an $\infty$-category which has an initial object and let $U: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{E}}$ be a cocartesian fibration of $\infty$-categories. Then every lifting problem

$\xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{C}}^{\mathrm{init}} \ar [r]^-{F_0} \ar [d] & \operatorname{\mathcal{D}}\ar [d]^{U} \\ \operatorname{\mathcal{C}}\ar [r]^-{G} \ar@ {-->}[ur]^{F} & \operatorname{\mathcal{E}}}$

admits a solution $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ which is $U$-left Kan extended from the full subcategory $\operatorname{\mathcal{C}}^{\mathrm{init}} \subseteq \operatorname{\mathcal{C}}$ spanned by the initial objects.

Proof of Proposition 7.3.5.1. Let $\operatorname{\mathcal{C}}$ and $\operatorname{\mathcal{D}}$ be $\infty$-categories, and suppose we are given diagrams $\delta : K \rightarrow \operatorname{\mathcal{C}}$ and $F_0: K \rightarrow \operatorname{\mathcal{D}}$ with the property that, for every object $C \in \operatorname{\mathcal{C}}$, the composite map

$K_{/C} = K \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}_{/C} \rightarrow K \xrightarrow {F_0} \operatorname{\mathcal{D}}$

has a colimit in the $\infty$-category $\operatorname{\mathcal{D}}$. We wish to show that $F_0$ has a left Kan extension along $\delta$ (the converse assertion is immediate from the definitions, and the analogous assertion for right Kan extensions will follow by a similar argument). Using Corollary 4.1.3.3, we can choose an inner anodyne morphism $\iota : K \hookrightarrow \operatorname{\mathcal{K}}$, where $\operatorname{\mathcal{K}}$ is an $\infty$-category. Since $\operatorname{\mathcal{C}}$ and $\operatorname{\mathcal{D}}$ are $\infty$-categories, we can extend $\delta$ and $F_0$ to functors $\overline{\delta }: \operatorname{\mathcal{K}}\rightarrow \operatorname{\mathcal{C}}$ and $\overline{F}_0: \operatorname{\mathcal{K}}\rightarrow \operatorname{\mathcal{D}}$, respectively (Proposition 4.1.3.1). For every object $C \in \operatorname{\mathcal{C}}$, the induced map $K \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}_{/C} \hookrightarrow \operatorname{\mathcal{K}}\times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}_{/C}$ is a categorical equivalence (Corollary 5.6.7.6), and therefore right cofinal (Corollary 7.2.1.13). Applying Proposition 7.2.2.9, we deduce that the composite map

$\operatorname{\mathcal{K}}\times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}_{/C} \rightarrow \operatorname{\mathcal{K}}\xrightarrow { \overline{F}_0 } \operatorname{\mathcal{D}}$

has a colimit in $\operatorname{\mathcal{D}}$. Corollary 7.3.5.8 now guarantees that the functor $\overline{F}_0$ admits a left Kan extension $\overline{F}: \operatorname{\mathcal{K}}\star _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$. Set $F = \overline{F}|_{\operatorname{\mathcal{C}}}$. Applying Proposition 7.3.2.11, we obtain a natural transformation $\overline{\beta }: \overline{F}_0 \rightarrow F \circ \overline{\delta }$ which exhibits $F$ as a left Kan extension of $\overline{F}_0$ along $\overline{\delta }$. Since $\iota$ is a categorical equivalence, it follows that $\overline{\beta }$ restricts to a natural transformation $F_0 \rightarrow F \circ \delta$ which exhibits $F$ as a left Kan extension of $F_0$ along $\delta$ (Proposition 7.3.1.14). $\square$