Proposition 7.3.1.15 (Change of Diagram). Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty $-categories, let $\delta : K \rightarrow \operatorname{\mathcal{C}}$ and $F_0: K \rightarrow \operatorname{\mathcal{D}}$ be diagrams, and let $\epsilon : K' \rightarrow K$ be a categorical equivalence of simplicial sets. Then:
- $(1)$
A natural transformation $\alpha : F \circ \delta \rightarrow F_0$ exhibits $F$ as a right Kan extension of $F_0$ along $\delta $ if and only if the induced transformation $\alpha ': F \circ (\delta \circ \epsilon ) \rightarrow F_0 \circ \epsilon $ exhibits $F$ as a right Kan extension of $F_0 \circ \epsilon $ along $\delta \circ \epsilon $.
- $(2)$
A natural transformation $\beta : F_0 \rightarrow F \circ \delta $ exhibits $F$ as a left Kan extension of $F_0$ along $\delta $ if and only if the induced transformation $\beta ': F_0 \circ \epsilon \rightarrow F \circ (\delta \circ \epsilon )$ exhibits $F$ as a left Kan extension of $F_0 \circ \epsilon $ along $\delta \circ \epsilon $.