Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

7.7.1 Cartesian Natural Transformations

We begin by introducing some terminology.

Definition 7.7.1.1. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $\mathscr {F}, \mathscr {G}: K \rightarrow \operatorname{\mathcal{C}}$ be a pair of diagrams indexed by the same simplicial set $K$. We say that a natural transformation $\gamma : \mathscr {F} \rightarrow \mathscr {G}$ is cartesian if, for every edge $e: x \rightarrow y$ of the simplicial set $K$, the corresponding diagram

7.79
\begin{equation} \begin{gathered}\label{equation:cartesian-natural-transformation} \xymatrix { \mathscr {F}(x) \ar [r]^{ \mathscr {F}(e) } \ar [d]^{ \gamma _ x } & \mathscr {F}(y) \ar [d]^{ \gamma _{y} } \\ \mathscr {G}(x) \ar [r]^{ \mathscr {F}(e) } & \mathscr {G}(y) } \end{gathered} \end{equation}

is a pullback square in the $\infty $-category $\operatorname{\mathcal{C}}$.

Example 7.7.1.2. In the situation of Definition 7.7.1.1, suppose that the natural transformation $\gamma $ is an isomorphism. Then, for every edge $e: x \rightarrow y$ of $K$, the diagram (7.79) is automatically a pullback square, since the vertical maps are isomorphisms (see Corollary 7.6.2.27). It follows that every isomorphism in the $\infty $-category $\operatorname{Fun}( K, \operatorname{\mathcal{C}})$ is a cartesian natural transformation. In particular, for every diagram $\mathscr {F}: K \rightarrow \operatorname{\mathcal{C}}$, the identity transformation $\operatorname{id}: \mathscr {F} \rightarrow \mathscr {F}$ is cartesian.

Remark 7.7.1.3. Let $\mathscr {F}, \mathscr {G}: K \rightarrow \operatorname{\mathcal{C}}$ be as in Definition 7.7.1.1, and let $e$ be an edge of the simplicial set $K$. If $\mathscr {F}(e)$ and $\mathscr {G}(e)$ are both isomorphisms in the $\infty $-category $\operatorname{\mathcal{C}}$, then the diagram (7.79) is automatically a pullback square (see Corollary 7.6.2.27). In particular, to verify that a natural transformation $\gamma : \mathscr {F} \rightarrow \mathscr {G}$ is cartesian, it suffices to check that (7.79) is a pullback square when $e$ is a nondegenerate edge of $K$.

Example 7.7.1.4. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category, let $f$ and $g$ be morphisms in $\operatorname{\mathcal{C}}$, and let $\gamma : f \rightarrow g$ be a morphism in the $\infty $-category $\operatorname{Fun}( \Delta ^1, \operatorname{\mathcal{C}})$. Then $\gamma $ is cartesian (in the sense of Definition 7.7.1.1) if and only if it corresponds to a pullback diagram $\Delta ^1 \times \Delta ^1 \rightarrow \operatorname{\mathcal{C}}$.

Example 7.7.1.5. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and suppose we are given a pair of diagrams $\mathscr {F}, \mathscr {G}: K \rightarrow \operatorname{\mathcal{C}}$ indexed by the same simplicial set $K$. If either $K$ or $\operatorname{\mathcal{C}}$ is a Kan complex, then every natural transformation $\gamma : \mathscr {F} \rightarrow \mathscr {G}$ is cartesian.

Example 7.7.1.6. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $f: C \rightarrow D$ be a morphism of $\operatorname{\mathcal{C}}$. Then, for every simplicial set $K$, the induced map of constant diagrams $\underline{f}: \underline{C} \rightarrow \underline{D}$ is a cartesian natural transformation.

Remark 7.7.1.7. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category, let $K$ be a simplicial set, and suppose we are given a commutative diagram

\[ \xymatrix { & \mathscr {G} \ar [dr]^{\beta } & \\ \mathscr {F} \ar [ur]^{ \alpha } \ar [rr]^{\gamma } & & \mathscr {H} } \]

in the $\infty $-category $\operatorname{Fun}(K, \operatorname{\mathcal{C}})$, where the natural transformation $\beta $ is cartesian. Then $\alpha $ is cartesian if and only if $\gamma $ is cartesian (see Proposition 7.6.2.28). In particular, the collection of cartesian natural transformations is closed under composition in $\operatorname{Fun}(K, \operatorname{\mathcal{C}})$.

Remark 7.7.1.8. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category, let $K$ be a simplicial set, and suppose we are given morphisms $\gamma : \mathscr {F} \rightarrow \mathscr {G}$ and $\gamma ': \mathscr {F}' \rightarrow \mathscr {G}'$ in the $\infty $-category $\operatorname{Fun}(K, \operatorname{\mathcal{C}})$ which are isomorphic when viewed as objects of $\operatorname{Fun}( \Delta ^1 \times K, \operatorname{\mathcal{C}})$. Then $\gamma $ is cartesian if and only if $\gamma '$ is cartesian (see Remark 7.6.2.10). In particular, the condition that a natural transformation $\gamma : \mathscr {F} \rightarrow \mathscr {G}$ is cartesian depends only on the homotopy class $[\gamma ]$.

Remark 7.7.1.9 (Change of Target). Let $\operatorname{\mathcal{C}}$ be an $\infty $-category, let $\mathscr {F}, \mathscr {G}: \operatorname{\mathcal{K}}\rightarrow \operatorname{\mathcal{C}}$ be diagrams indexed by the same simplicial set $K$, and let $\gamma : \mathscr {F} \rightarrow \mathscr {G}$ be a natural transformation. Suppose we are given a functor of $\infty $-categories $U: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{C}}'$ which preserves pullback squares. Set $\mathscr {F}' = U \circ \mathscr {F}$ and $\mathscr {G}' = U \circ \mathscr {G}$, so that $\gamma $ induces a natural transformation $\gamma ': \mathscr {F}' \rightarrow \mathscr {G}'$ of $K$-indexed diagrams in the $\infty $-category $\operatorname{\mathcal{C}}'$. If $\gamma $ is cartesian, then $\gamma '$ is cartesian. The converse holds if the functor $U$ is conservative (see Proposition 7.1.4.15).

Remark 7.7.1.10 (Change of Source). Let $\operatorname{\mathcal{C}}$ be an $\infty $-category, let $\mathscr {F}, \mathscr {G}: K \rightarrow \operatorname{\mathcal{C}}$ be diagrams indexed by the same simplicial set $K$, and let $\gamma : F \rightarrow G$ be a natural transformation. Suppose we are given a morphism of simplicial sets $u: K' \rightarrow K$. Set $\mathscr {F}' = \mathscr {F} \circ u$ and $\mathscr {G}' = \mathscr {G} \circ u$, so that $\gamma $ induces a natural transformation $\gamma ': \mathscr {F}' \rightarrow \mathscr {G}'$ of $K'$-indexed diagrams in $\operatorname{\mathcal{C}}$. If $\gamma $ is cartesian, then $\gamma '$ is cartesian. The converse holds if $\gamma $ is surjective on edges.

Remark 7.7.1.11. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category, let $K$ be a simplicial set, and suppose we are given a diagram $\sigma :$

\[ \xymatrix { \mathscr {F} \ar [d]^{\gamma } \ar [d] & \mathscr {F}' \ar [d]^{\gamma '} \\ \mathscr {G} \ar [r] & \mathscr {G}' } \]

in the $\infty $-category $\operatorname{Fun}(K, \operatorname{\mathcal{C}})$ which is a levelwise pullback square: that is, for each vertex $x \in K$, the induced diagram $\sigma _{x}:$

\[ \xymatrix { \mathscr {F}(x) \ar [d]^{\gamma _ x} \ar [r] & \mathscr {F}'(x) \ar [d]^{\gamma '_{x}} \\ \mathscr {G}(x) \ar [r] & \mathscr {G}'(x) } \]

is a pullback square in the $\infty $-category $\operatorname{\mathcal{C}}$. If the natural transformation $\gamma '$ is cartesian, then the natural transformation $\gamma $ is also cartesian. To prove this, we must show that for each edge $e: x \rightarrow y$ of $K$, the left side of the diagram

\[ \xymatrix { \mathscr {F}(x) \ar [r]^{\mathscr {F}(x)} \ar [d]^{ \gamma _{x} } & \mathscr {F}(y) \ar [r] \ar [d]^{ \gamma _{y} } & \mathscr {F}'(y) \ar [d]^{ \gamma '_{y} } \\ \mathscr {G}(x) \ar [r]^{ \mathscr {G}(e) } & \mathscr {G}(y) \ar [r] & \mathscr {G}'(y) } \]

is a pullback square. Since the right side is a pullback square by virtue of our hypothesis on $\sigma $, this is equivalent to the requirement that the outer rectangle is a pullback square (Proposition 7.6.2.28). This also appears as the outer rectangle in a commutative diagram

\[ \xymatrix { \mathscr {F}(x) \ar [r] \ar [d]^{ \gamma _{x} } & \mathscr {F}'(x) \ar [r]^{ \mathscr {F}'(e)} \ar [d]^{ \gamma '_{x} } & \mathscr {F}'(y) \ar [d]^{ \gamma '_{y} } \\ \mathscr {G}(x) \ar [r] & \mathscr {G}'(x) \ar [r]^{ \mathscr {G}'(e) } & \mathscr {G}'(y) } \]

where our hypothesis on $\sigma $ guarantees that the left side is a pullback diagram. Applying Proposition 7.6.2.28, we are reduced to showing that the right side is also a pullback diagram, which follows from our assumption that $\gamma '$ is cartesian.

Remark 7.7.1.12 (Cartesian Transformations as Cartesian Sections). Let $\operatorname{\mathcal{C}}$ be an $\infty $-category, let $\mathscr {G}: K \rightarrow \operatorname{\mathcal{C}}$ be a diagram, and let $\operatorname{\mathcal{C}}\operatorname{\vec{\times }}_{\operatorname{\mathcal{C}}} K$ denote the oriented fiber product of Definition 4.6.4.1. Then projection onto the second factor determines a cocartesian fibration of simplicial sets $U: \operatorname{\mathcal{C}}\operatorname{\vec{\times }}_{\operatorname{\mathcal{C}}} K \rightarrow \operatorname{\mathcal{C}}$. By construction, sections of $U$ can be identified with pairs $(\mathscr {F}, \gamma )$, where $\mathscr {F}: K \rightarrow \operatorname{\mathcal{C}}$ is a diagram and $\gamma : \mathscr {F} \rightarrow \mathscr {G}$ is a natural transformation. In this case, the natural transformation $\gamma $ is cartesian (in the sense of Definition 7.7.1.1) if and only if the corresponding section of $U$ is cartesian: that is, it carries each edge of $K$ to a $U$-cartesian edge of $\operatorname{\mathcal{C}}\operatorname{\vec{\times }}_{\operatorname{\mathcal{C}}} K$. This is a reformulation of Proposition 7.6.2.20.

For diagrams indexed by a cone $K^{\triangleright }$, Definition 7.7.1.1 can be simplified. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category, and suppose we are given a natural transformation $\overline{\gamma }: \overline{\mathscr {F}} \rightarrow \overline{\mathscr {G}}$ between diagrams $\overline{\mathscr {F}}, \overline{\mathscr {G}}: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$. Set $\mathscr {F} = \overline{\mathscr {F}}|_{K}$ and $\mathscr {G} = \overline{\mathscr {G}}|_{K}$, so that $\overline{\gamma }$ restricts to a natural transformation $\gamma : \mathscr {F} \rightarrow \mathscr {G}$. Let $C$ and $D$ denote the values of $\overline{\mathscr {F}}$ and $\overline{\mathscr {G}}$ at the cone point of $K^{\triangleright }$, so that $\overline{\gamma }$ determines a morphism $f: C \rightarrow D$ of $\operatorname{\mathcal{C}}$. Precomposition with the canonical map

\[ \Delta ^1 \times K \rightarrow K \diamond \Delta ^0 \twoheadrightarrow K \star \Delta ^0 = K^{\triangleright } \]

carries $\overline{\gamma }$ to a morphism in the $\infty $-category $\operatorname{Fun}( \Delta ^1 \times K, \operatorname{\mathcal{C}})$, which we can identify with a commutative diagram

7.80
\begin{equation} \begin{gathered}\label{equation:cartesian-transformation-cone-indexed} \xymatrix { \mathscr {F} \ar [r] \ar [d]^{\gamma } & \underline{C} \ar [d]^{ \underline{f} } \\ \mathscr {G} \ar [r] & \underline{D} } \end{gathered} \end{equation}

of $K$-indexed diagrams in $\operatorname{\mathcal{C}}$.

Proposition 7.7.1.13. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category, let $K$ be a simplicial set, and let $\overline{\gamma }: \overline{\mathscr {F}} \rightarrow \overline{\mathscr {G}}$ be a natural transformation between diagrams $\overline{\mathscr {F}}, \overline{\mathscr {G}}: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$. The following conditions are equivalent:

$(1)$

The natural transformation $\overline{\gamma }$ is cartesian.

$(2)$

The diagram (7.80) is a levelwise pullback square.

Proof. For each vertex $x \in K$, let $e_{x}$ denote the edge of $K^{\triangleright }$ given by the map $\Delta ^1 \simeq \{ x\} ^{\triangleright } \hookrightarrow K^{\triangleright }$. Note that $\overline{\gamma }$ carries $e_ x$ to a commutative diagram

\[ \xymatrix { \mathscr {F}(x) \ar [r] \ar [d]^{\gamma _{x}} & C \ar [d]^{f} \\ \mathscr {G}(x) \ar [r] & D } \]

in the $\infty $-category $\operatorname{\mathcal{C}}$, which is obtained from (7.80) by evaluating at $x$. It follows that $(1)$ implies $(2)$. Conversely, suppose that condition $(2)$ is satisfied, and let $e: x \rightarrow y$ be any edge of $K^{\triangleright }$; we wish to show that $\overline{\gamma }$ carries $e$ to a pullback square in $\operatorname{\mathcal{C}}$. Without loss of generality, we may assume that $e$ is nondegenerate (Remark 7.7.1.3). If $y$ is the cone point of $K^{\triangleright }$, then $x$ belongs to $K$ and $e = e_ x$, so the desired result follows from assumption $(2)$. We are therefore reduced to the case where $e$ is an edge of $K$: that is, to showing that the natural transformation $\gamma : \mathscr {F} \rightarrow \mathscr {G}$ is cartesian. This follows from Remark 7.7.1.11, since $\gamma $ is a pullback of the cartesian natural transformation $\underline{f}: \underline{C} \rightarrow \underline{D}$ (Example 7.7.1.6). $\square$

Variant 7.7.1.14. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category, let $K$ be a simplicial set, and suppose we are given a natural transformation $\overline{\gamma }: \overline{\mathscr {F}} \rightarrow \overline{\mathscr {G}}$ between diagrams $\overline{\mathscr {F}}, \overline{\mathscr {G}}: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$. If there exists a morphism $f: C \rightarrow D$ of $\operatorname{\mathcal{C}}$ and a levelwise pullback square $\sigma :$

7.81
\begin{equation} \begin{gathered}\label{equation:levelwise-pullback-for-cartesian} \xymatrix { \overline{\mathscr {F}} \ar [d]^{ \overline{\gamma } } \ar [r] & \underline{C} \ar [d]^{ \underline{f} } \\ \overline{\mathscr {G}} \ar [r] & \underline{D}, } \end{gathered} \end{equation}

in $\operatorname{Fun}( K^{\triangleright }, \operatorname{\mathcal{C}})$, then $\overline{\gamma }$ is cartesian (see Remark 7.7.1.11 and Example 7.7.1.6). Conversely, suppose that $\overline{\gamma }$ is cartesian. Let $v$ denote the cone point of $K^{\triangleright }$ and set $C = \overline{\mathscr {F}}(v)$ and $D = \overline{\mathscr {G}}(v)$, so that $\overline{\gamma }$ determines a morphism $f: C \rightarrow D$. There is a unique morphism of simplicial sets $h: \Delta ^1 \times K^{\triangleright } \rightarrow K^{\triangleright }$ such that $h|_{ \{ 0\} \times K^{\triangleright } }$ is the identity and $h|_{ \{ 1\} \times K^{\triangleright } }$ is the constant map taking the value $v$. Precomposition with $h$ carries $\overline{\gamma }$ to a morphism in the $\infty $-category $\operatorname{Fun}( \Delta ^1 \times K^{\triangleright }, \operatorname{\mathcal{C}})$, which we can identify with a levelwise pullback square of the form (7.81).

Definition 7.7.1.15. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $K$ be a simplicial set. We say that a morphism $\overline{\mathscr {F}}: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ is a universal colimit diagram if, for every cartesian natural transformation $\overline{\mathscr {F}}' \rightarrow \overline{\mathscr {F}}$, the morphism $\overline{\mathscr {F}}': K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ is a colimit diagram in the $\infty $-category $\operatorname{\mathcal{C}}$.

Remark 7.7.1.16. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. If $\overline{\mathscr {F}}: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ is a universal colimit diagram, then it is a colimit diagram. This follows immediately from the definition, since the identity transformation $\operatorname{id}: \overline{\mathscr {F}} \rightarrow \overline{\mathscr {F}}$ is cartesian (Example 7.7.1.2).

Example 7.7.1.17. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $K = \emptyset $ be the empty simplicial set. Then we can identify a diagram $\overline{\mathscr {F}}: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ which an object $C \in \operatorname{\mathcal{C}}$. In this case, the following conditions are equivalent:

$(a)$

The morphism $\overline{\mathscr {F}}$ is a universal colimit diagram.

$(b)$

For every morphism $u: C' \rightarrow C$ of $\operatorname{\mathcal{C}}$, the object $C' \in \operatorname{\mathcal{C}}$ is initial.

$(c)$

The object $C \in \operatorname{\mathcal{C}}$ is initial and every morphism $u: C' \rightarrow C$ is an isomorphism.

If these conditions are satisfied, we say that $C$ is a universal initial object of $\operatorname{\mathcal{C}}$.

Remark 7.7.1.18. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $Y \in \operatorname{\mathcal{C}}$ be a universal initial object (in the sense of Example 7.7.1.17). Then any morphism $f: Y \rightarrow Z$ in $\operatorname{\mathcal{C}}$ is a monomorphism. That is, if $X$ is another object of $\operatorname{\mathcal{C}}$, then the composition map $\operatorname{Hom}_{ \operatorname{\mathcal{C}}}( X, Y ) \xrightarrow { [f] \circ } \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Z )$ induces a homotopy equivalence from $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)$ to a summand of $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X, Z)$. This follows the observation that if the morphism space $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)$ is nonempty, then $X$ is isomorphic to $Y$; it follows that $X$ is also initial, so that the morphism spaces $\operatorname{Hom}_{ \operatorname{\mathcal{C}}}( X, Y )$ and $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Z )$ are both contractible.

Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $\overline{ \mathscr {F} }: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ be a diagram carrying the cone point of $K^{\triangleright }$ to an object $C \in \operatorname{\mathcal{C}}$. Recall that $\overline{ \mathscr {F} }$ determines a natural transformation $\beta $ from $\mathscr {F} = \overline{\mathscr {F}}|_{K}$ to the constant diagram $\underline{C}$, given by the composition

\[ \Delta ^1 \times K \simeq K \star _{K} K \rightarrow K \star _{ \Delta ^0 } \Delta ^0 = K^{\triangleright } \xrightarrow { \overline{\mathscr {F}} } \operatorname{\mathcal{C}}. \]

Moreover, $\overline{\mathscr {F}}$ is a colimit diagram in $\operatorname{\mathcal{C}}$ if and only if the natural transformation $\beta $ exhibits $C$ as a colimit of $\mathscr {F}$ (Remark 7.1.3.6). This observation has a counterpart for universal colimit diagrams:

Proposition 7.7.1.19. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category, let $\overline{\mathscr {F}}: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ be a morphism, and define $\beta : \mathscr {F} \rightarrow \underline{C}$ as above. The following conditions are equivalent:

$(1)$

The morphism $\overline{ \mathscr {F} }$ is a universal colimit diagram, in the sense of Definition 7.7.1.15.

$(2)$

For every morphism $u: C' \rightarrow C$ in $\operatorname{\mathcal{C}}$ and every levelwise pullback diagram

7.82
\begin{equation} \begin{gathered}\label{equation:universal-colimit-diagram-reformulated} \xymatrix { \mathscr {F}' \ar [r]^{ \beta ' } \ar [d] & \underline{C}' \ar [d]^{ \underline{u} } \\ \mathscr {F} \ar [r]^{\beta } & \underline{C} } \end{gathered} \end{equation}

in the $\infty $-category $\operatorname{Fun}(K, \operatorname{\mathcal{C}})$, the natural transformation $\beta '$ exhibits $C'$ as a colimit of $\mathscr {F}'$

Proof. The implication $(2) \Rightarrow (1)$ follows from Remark 7.1.3.6 and Proposition 7.7.1.13. To prove the converse, it suffices to observe that every diagram of the form (7.82) is isomorphic to one which is obtained from a natural transformation $\overline{\mathscr {F}}' \rightarrow \overline{\mathscr {F}}$ of $K^{\triangleright }$-indexed diagrams in $\operatorname{\mathcal{C}}$. This follows from the fact that the comparison map $K \diamond \Delta ^0 \twoheadrightarrow K \star \Delta ^0$ of Theorem 4.5.8.8 is a categorical equivalence of simplicial sets. $\square$

Corollary 7.7.1.20. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $K$ be a simplicial set. The following conditions are equivalent:

$(1)$

Every colimit diagram $\overline{\mathscr {F}}: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ is a universal colimit diagram.

$(2)$

In the $\infty $-category $\operatorname{\mathcal{C}}$, $K$-indexed colimits are universal.

Proof. The implication $(2) \Rightarrow (1)$ follows from Proposition 7.7.1.19. The reverse implication follows from the observation that, if $\mathscr {F}: K \rightarrow \operatorname{\mathcal{C}}$ is a diagram, then every natural transformation from $\mathscr {F}$ to a constant diagram is homotopic to one which arises from a diagram $\overline{\mathscr {F}}: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ extending $\mathscr {F}$ (see Theorem 4.6.4.17). $\square$

Definition 7.7.1.21. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $K$ be a simplicial set. We say that a diagram $\mathscr {F}: K \rightarrow \operatorname{\mathcal{C}}$ has a universal colimit if there exists a universal colimit diagram $\overline{\mathscr {F}}: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ satisfying $\overline{\mathscr {F}}|_{K} = \mathscr {F}$.

Remark 7.7.1.22. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $\mathscr {F}: K \rightarrow \operatorname{\mathcal{C}}$ be a diagram which has a universal colimit. Then, if $\overline{\mathscr {F}}: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ is any colimit diagram extending $\mathscr {F}$, then $\overline{\mathscr {F}}$ is a universal colimit diagram. This follows from the observation that $\overline{\mathscr {F}}$ is unique up to isomorphism.