Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

7.7.2 Descent Diagrams

Let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits fiber products. Then every morphism $f: C' \rightarrow C$ of $\operatorname{\mathcal{C}}$ determines a pullback functor $f^{\ast }: \operatorname{\mathcal{C}}_{/C} \rightarrow \operatorname{\mathcal{C}}_{/C'}$, given on objects by the construction $D \mapsto C' \times _{C} D$ (see Definition 7.6.2.22 and Proposition 7.6.2.24). If we regard the object $C$ as fixed, then the functor $f^{\ast }$ depends functorially on $C'$ (as an object of the slice $\infty $-category $\operatorname{\mathcal{C}}_{/C}$). Consequently, every diagram $F: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ carrying the cone point of $K^{\triangleright }$ to $C \in \operatorname{\mathcal{C}}$ determines a comparison functor $\operatorname{\mathcal{C}}_{/C} \rightarrow \varprojlim _{x \in K} \operatorname{\mathcal{C}}_{ / F(x) }$. Our goal in this section is to show that, under mild hypotheses, this comparison functor is fully faithful if and only if $F$ is a universal colimit diagram (Theorem 7.7.2.8). We begin by articulating this condition more precisely.

Notation 7.7.2.1. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a cartesian fibration of simplicial sets. For every morphism of simplicial sets $F: K \rightarrow \operatorname{\mathcal{C}}$, recall that the simplicial set $\operatorname{Fun}_{ / \operatorname{\mathcal{C}}}(K, \operatorname{\mathcal{E}})$ is an $\infty $-category (Corollary 4.1.4.8), whose objects are given by morphisms $\widetilde{F}: K \rightarrow \operatorname{\mathcal{E}}$ satisfying $U \circ \widetilde{F} = F$. We let $\operatorname{Fun}_{ / \operatorname{\mathcal{C}}}^{\operatorname{ACart}}(K, \operatorname{\mathcal{E}})$ denote the full subcategory spanned by those objects where $\widetilde{F}$ carries every edge of $K$ to a $U$-cartesian edge of $\operatorname{\mathcal{E}}$.

Remark 7.7.2.2. In the situation of Notation 7.7.2.1, there is a canonical isomorphism $\operatorname{Fun}_{ / \operatorname{\mathcal{C}}}( K, \operatorname{\mathcal{E}}) \xleftarrow {\sim } \operatorname{Fun}_{ / K }( K, K \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}})$ of simplicial sets, which restricts to an isomorphism of $\operatorname{Fun}^{\operatorname{ACart}}_{/\operatorname{\mathcal{C}}}(K, \operatorname{\mathcal{E}})$ with the full subcategory

\[ \operatorname{Fun}^{\operatorname{Cart}}_{ / K}(K, K \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}) \subseteq \operatorname{Fun}_{ / K }( K, K \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}) \]

of Variant 5.3.1.11.

Remark 7.7.2.3. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a cartesian fibration of simplicial sets whose fibers are essentially small $\infty $-categories, and let

\[ \operatorname{Tr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{QC}}\quad \quad C \mapsto \operatorname{\mathcal{E}}_{C} \]

be a contravariant transport representation for $U$ (Definition 8.6.8.1). If $K$ is a small simplicial set equipped with a morphism $F: K \rightarrow \operatorname{\mathcal{C}}$, then $\operatorname{Fun}^{\operatorname{ACart}}_{/\operatorname{\mathcal{C}}}(K, \operatorname{\mathcal{E}})$ can be identified with a limit of the composite diagram $K^{\operatorname{op}} \xrightarrow { F^{\operatorname{op}} } \operatorname{\mathcal{C}}^{\operatorname{op}} \xrightarrow { \operatorname{Tr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}} \operatorname{\mathcal{QC}}$ (Proposition 8.6.8.11). More generally, if $\kappa $ is an uncountable cardinal for which the cartesian fibration $U$ is essentially $\kappa $-small and the $\infty $-category $\operatorname{Fun}^{\operatorname{ACart}}_{/\operatorname{\mathcal{C}}}(K, \operatorname{\mathcal{E}})$ is essentially $\kappa $-small, then $\operatorname{Fun}^{\operatorname{ACart}}_{/\operatorname{\mathcal{C}}}(K, \operatorname{\mathcal{E}})$ can be realized as the limit of $\operatorname{Tr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}} \circ F^{\operatorname{op}}$ in the $\infty $-category $\operatorname{\mathcal{QC}}^{< \kappa }$; see Proposition 8.6.8.11.

Remark 7.7.2.4 (Isomorphism Invariance). In the situation of Notation 7.7.2.1, suppose that $\operatorname{\mathcal{C}}$ is an $\infty $-category. Then the condition that $F: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ is an effective descent diagram for $U$ depends only on the isomorphism class of $F$ (as an object of the $\infty $-category $\operatorname{Fun}( K^{\triangleright }, \operatorname{\mathcal{C}})$). This follows from the characterization given in Remark 7.7.2.3 (together with Corollary 7.1.3.14).

Example 7.7.2.5. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a cartesian fibration of simplicial sets and let $F: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ be a diagram, carrying the cone point of $K^{\triangleright }$ to a vertex $C \in \operatorname{\mathcal{C}}$. Then evaluation at the cone point of $K^{\triangleright }$ induces a trivial Kan fibration $\operatorname{Fun}^{\operatorname{ACart}}_{/\operatorname{\mathcal{C}}}(K^{\triangleright }, \operatorname{\mathcal{E}}) \rightarrow \operatorname{\mathcal{E}}_{C}$. See Proposition 5.3.1.21.

Definition 7.7.2.6. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a cartesian fibration of simplicial sets. We say that a morphism of simplicial sets $F: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ is a descent diagram for $U$ if the restriction map

\[ \theta : \operatorname{Fun}_{ / \operatorname{\mathcal{C}}}^{\operatorname{ACart}}( K^{\triangleright }, \operatorname{\mathcal{E}}) \rightarrow \operatorname{Fun}_{ / \operatorname{\mathcal{C}}}^{\operatorname{ACart}}(K, \operatorname{\mathcal{E}}) \quad \quad \widetilde{F} \mapsto \widetilde{F}|_{K} \]

is fully faithful. We say that $F$ is an effective descent diagram for $U$ if $\theta $ is an equivalence of $\infty $-categories.

Remark 7.7.2.7. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a cartesian fibration of simplicial sets, and let $F: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ be a morphism carrying the cone point to a vertex $C \in \operatorname{\mathcal{C}}$. For every vertex $x \in K$, the restriction of $F$ to $\{ x\} ^{\triangleright }$ determines an edge $e_{x}: F(x) \rightarrow C$ of $\operatorname{\mathcal{C}}$, which has an associated contravariant transport functor $e_{x}^{\ast }: \operatorname{\mathcal{E}}_{C} \rightarrow \operatorname{\mathcal{E}}_{ F(x) }$ (Definition 5.2.2.15). Using Remark 7.7.2.3 and Example 7.7.2.5, we can identify the restriction map $\theta $ appearing in Definition 7.7.2.6 with a comparison functor $\operatorname{\mathcal{E}}_{C} \rightarrow \varprojlim _{x \in K}( \operatorname{\mathcal{E}}_{F(x) } )$, given informally by the construction $(E in \operatorname{\mathcal{E}}_{C} ) \mapsto \{ e_{x}^{\ast } E \in \operatorname{\mathcal{E}}_{F(x)} \} _{x \in K}$. The morphism $F$ is an effective descent diagram for $\operatorname{\mathcal{C}}$ if and only if this comparison functor is an equivalence of $\infty $-categories. More precisely, if $\kappa $ is an uncountable cardinal for which $U$ is essentially $\kappa $-small, then $F$ is an effective descent diagram for $\operatorname{\mathcal{C}}$ if and only if the composition

\[ (K^{\triangleright })^{\operatorname{op}} \xrightarrow { F^{\operatorname{op}} } \operatorname{\mathcal{C}}^{\operatorname{op}} \xrightarrow { \operatorname{Tr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}} \operatorname{\mathcal{QC}}^{< \kappa } \]

is a limit diagram in the $\infty $-category $\operatorname{\mathcal{QC}}^{< \kappa }$; here $\operatorname{Tr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}$ denotes a contravariant transport representation for the cartesian fibration $U$ (Proposition 8.6.8.13).

We can now formulate the main result of this section. Recall that an $\infty $-category $\operatorname{\mathcal{C}}$ admits pullbacks if and only if the evaluation functor

\[ \operatorname{ev}_1: \operatorname{Fun}( \Delta ^1, \operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{C}}\quad \quad (u: C' \rightarrow C) \mapsto C \]

is a cartesian fibration of $\infty $-categories (Corollary 7.6.2.25).

Theorem 7.7.2.8. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits pullbacks and let $F: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ be a morphism of simplicial sets. If $F$ is a universal colimit diagram (Definition 7.7.1.15), then $F$ is a descent diagram for the cartesian fibration $\operatorname{ev}_{1}: \operatorname{Fun}(\Delta ^1, \operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{C}}$. The converse holds if $\operatorname{\mathcal{C}}$ admits $K$-indexed colimits or if $\operatorname{\mathcal{C}}$ has a final object.

We will give the proof of Theorem 7.7.2.8 at the end of this section.

Warning 7.7.2.9. Beware that the second assertion of Theorem 7.7.2.8 is generally false if we do not assume either that $\operatorname{\mathcal{C}}$ has $K$-indexed colimits or a final object. For example, suppose that $\operatorname{\mathcal{C}}$ is a Kan complex. Then the evaluation map $\operatorname{ev}_{1}: \operatorname{Fun}(\Delta ^1, \operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{C}}$ is a trivial Kan fibration (Corollary 3.1.3.6), so every morphism $F: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ is an (effective) descent diagram for $\operatorname{ev}_{1}$.

Notation 7.7.2.10. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $F: K \rightarrow \operatorname{\mathcal{C}}$ be a diagram, which we identify with an object of the $\infty $-category $\operatorname{Fun}(K, \operatorname{\mathcal{C}})$. By definition, objects of the slice $\infty $-category $\operatorname{Fun}(K, \operatorname{\mathcal{C}})_{/F}$ can be identified with pairs $(F', \gamma )$, where $F': K \rightarrow \operatorname{\mathcal{C}}$ is a diagram and $\gamma : F' \rightarrow F$ is a natural transformation.We let $\operatorname{Fun}(K,\operatorname{\mathcal{C}})_{/F}^{\operatorname{Cart}}$ denote the full subcategory of $\operatorname{Fun}(K, \operatorname{\mathcal{C}})_{/F}$ spanned by those pairs $(F',\gamma )$ where $\gamma $ is cartesian, in the sense of Definition 7.7.1.1.

Let $\operatorname{ev}_{1}: \operatorname{Fun}(\Delta ^1, \operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{C}}$ be the functor given by evaluation at $1 \in \Delta ^1$. Then the slice diagonal morphism of Construction 4.6.4.13) induces an equivalence of $\infty $-categories

\[ \iota : \operatorname{Fun}(K, \operatorname{\mathcal{C}})_{/F} \hookrightarrow \operatorname{Fun}(K,\operatorname{\mathcal{C}}) \operatorname{\vec{\times }}_{ \operatorname{Fun}(K,\operatorname{\mathcal{C}}) } \{ F\} \simeq \operatorname{Fun}_{/\operatorname{\mathcal{C}}}(K, \operatorname{Fun}(\Delta ^1, \operatorname{\mathcal{C}}) ) \]

(see Corollary 4.6.4.18). If $\operatorname{\mathcal{C}}$ admits pullbacks, then $\operatorname{ev}_{1}$ is a cartesian fibration, and $\iota $ restricts to an equivalence of full subcategories $\operatorname{Fun}(K, \operatorname{\mathcal{C}})_{/F}^{\operatorname{Cart}} \hookrightarrow \operatorname{Fun}^{\operatorname{ACart}}_{/\operatorname{\mathcal{C}}}(K, \operatorname{Fun}(\Delta ^1, \operatorname{\mathcal{C}})$ (see Remark 7.7.1.12).

Remark 7.7.2.11. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits pullbacks and let

\[ \operatorname{ev}_{1}: \operatorname{Fun}(\Delta ^1, \operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{C}} \]

denote the cartesian fibration given by evaluation at the vertex $1 \in \Delta ^1$. It follows from Notation 7.7.2.10 that a morphism $F: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ is a descent diagram for $\operatorname{ev}_{1}$ if and only if the restriction functor

\[ \theta : \operatorname{Fun}( K^{\triangleright }, \operatorname{\mathcal{C}})^{\operatorname{Cart}}_{/F} \rightarrow \operatorname{Fun}( K, \operatorname{\mathcal{C}})^{\operatorname{Cart}}_{/F|_{K}} \]

is fully faithful. Similarly $F$ is an effective descent diagram for $\operatorname{ev}_{1}$ if and only if $\theta $ is an equivalence of $\infty $-categories.

Corollary 7.7.2.12. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits pullbacks and let $K$ be a simplicial set. If $K$-indexed colimits in $\operatorname{\mathcal{C}}$ are universal, then the restriction functor

\[ \operatorname{Fun}( K^{\triangleright }, \operatorname{\mathcal{C}})^{\operatorname{Cart}}_{/F} \rightarrow \operatorname{Fun}( K, \operatorname{\mathcal{C}})^{\operatorname{Cart}}_{/F|_{K}} \]

for every colimit diagram $F: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$. The converse holds $\operatorname{\mathcal{C}}$ admits $K$-indexed colimits or has a final object.

Definition 7.7.2.13. Let $K$ be a simplicial set and let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits pullbacks and $K$-indexed colimits. We say that a morphism $F: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ is a strongly universal colimit diagram if the restriction map $\operatorname{Fun}( K^{\triangleright }, \operatorname{\mathcal{C}})^{\operatorname{Cart}}_{/F} \rightarrow \operatorname{Fun}( K, \operatorname{\mathcal{C}})^{\operatorname{Cart}}_{/F|_{K}}$ is an equivalence of $\infty $-categories: that is, if $F$ is an effective descent diagram for the evaluation functor $\operatorname{ev}_{1}: \operatorname{Fun}(\Delta ^1, \operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{C}}$ (Remark 7.7.2.11).

Remark 7.7.2.14. Let $K$ be a simplicial set and let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits pullbacks and $K$-indexed colimits. It follows from Theorem 7.7.2.8 that if $F: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ is a strongly universal colimit diagram, then it is a universal colimit diagram (and therefore a colimit diagram).

Definition 7.7.2.15. Let $K$ be a simplicial set and let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits pullbacks and $K$-indexed colimits. Then, for every diagram $F: K \rightarrow \operatorname{\mathcal{C}}$, we can choose a colimit diagram $\overline{F}: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ satisfying $\overline{F}|_{K} = F$. We say that the colimit of $F$ is strongly universal if $\overline{F}$ is a strongly universal colimit diagram, in the sense of Definition 7.7.2.13. By virtue of Remark 7.7.2.4, this condition depends only the diagram $F$ (and not on the choice of extension $\overline{F}: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$).

We say that $K$-indexed colimits in $\operatorname{\mathcal{C}}$ are strongly universal if, for every diagram $F: K \rightarrow \operatorname{\mathcal{C}}$, the colimit of $F$ is strongly universal.

Example 7.7.2.16. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits pullbacks. Then a colimit of the empty diagram $F: \emptyset \rightarrow \operatorname{\mathcal{C}}$ can be identified with an initial object $C \in \operatorname{\mathcal{C}}$. In this case, $C$ is a universal colimit of $F$ if and only if it is a strongly universal colimit of $F$: both conditions are equivalent to the requirement that the projection map $\operatorname{\mathcal{C}}_{/C} \rightarrow \Delta ^0$ is an equivalence of $\infty $-categories, or that every morphism $C' \rightarrow C$ is an isomorphism. See Example 7.7.1.17.

Remark 7.7.2.18. Let $K$ be a simplicial set, and let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits pullbacks and $K$-indexed colimits, and let $F: K \rightarrow \operatorname{\mathcal{C}}$ be a diagram having colimit $\varinjlim (F)$. Stated more informally, Theorem 7.7.2.8 asserts that the colimit of $F$ is universal if and only if the formation of pullbacks induces a fully faithful functor

\[ \operatorname{\mathcal{C}}_{ / \varinjlim (F) } \rightarrow \varprojlim _{x \in K} \operatorname{\mathcal{C}}_{ / F(x) } \quad \quad E \mapsto \{ F(x) \times _{ \varinjlim (F) } E \} _{x \in K} \]

(see Remark 7.7.2.7). Similarly, the colimit of $F$ is strongly universal if and only if this functor is an equivalence of $\infty $-categories. More precisely, if $\kappa $ is an uncountable cardinal for which $\operatorname{\mathcal{C}}$ is essentially small, then the colimit of $F$ is strongly universal if and only if it is preserved by the functor

\[ \operatorname{\mathcal{C}}\rightarrow (\operatorname{\mathcal{QC}}^{< \kappa })^{\operatorname{op}} \quad \quad C \mapsto \operatorname{\mathcal{C}}_{/C} \]

given by contravariant transport for the evaluation functor $\operatorname{ev}_{1}: \operatorname{Fun}(\Delta ^1, \operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{C}}$.

Corollary 7.7.2.19. Let $K$ be a simplicial set and let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits pullbacks and $K$-indexed colimits. Then a morphism $F: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ is a strongly universal colimit diagram if and only if it satisfies the following condition:

$(\ast )$

A natural transformation $\gamma : G \rightarrow F$ in $\operatorname{Fun}(K^{\triangleright }, \operatorname{\mathcal{C}})$ is cartesian if and only if the restriction $\gamma |_{K}: G|_{K} \rightarrow F|_{K}$ is cartesian and $G$ is a colimit diagram.

Proof. Assume first that $F$ is a strongly universal colimit diagram. Then $F$ is a universal colimit diagram (Remark 7.7.2.14). Consequently, if we are given cartesian natural transformation $\gamma : G \rightarrow F$, then $G: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ is a colimit diagram. Conversely, suppose we are given a natural transformation $\gamma : G \rightarrow F$ where $G$ is a colimit diagram and $\gamma |_{K}$ is cartesian. Our assumption that $F$ is a strongly universal colimit diagram guarantees that we can lift $\gamma |_{K}$ to a cartesian natural transformation $\gamma ': G' \rightarrow F$. Since $F$ is a universal colimit diagram, $G'$ is a colimit diagram. It follows that the identity transformation $\operatorname{id}: G|_{K} \rightarrow G|_{K}$ admits an essentially unique lift to a natural transformation $G' \rightarrow G$. Our assumption that $G$ is a colimit diagram guarantees that this natural transformation is an isomorphism (Proposition 7.1.3.13). We may therefore assume without loss of generality that $G' = G$. In this case, to show that $\gamma $ is cartesian, it will suffice to show that it is homotopic to the $\gamma '$. By construction $\gamma $ and $\gamma '$ have the same image under the restriction map

\[ \rho : \operatorname{Hom}_{ \operatorname{Fun}(K^{\triangleright },\operatorname{\mathcal{C}})}( G, F ) \rightarrow \operatorname{Hom}_{ \operatorname{Fun}(K, \operatorname{\mathcal{C}}) }( G|_{K}, F|_{K} ). \]

The desired result now follows from the observation that $\rho $ is a homotopy equivalence (since $G$ is a colimit diagram; see Proposition 7.1.7.4).

We now prove the converse. Assume that condition $(\ast )$ is satisfied; we wish to show that the restriction functor $\operatorname{Fun}( K^{\triangleright }, \operatorname{\mathcal{C}})_{ /F}^{\operatorname{Cart}} \rightarrow \operatorname{Fun}( K, \operatorname{\mathcal{C}})_{ /F|_{K}}^{\operatorname{Cart}}$ is an equivalence of $\infty $-categories. It follows from Theorem 7.7.2.8 that the functor $\theta $ is fully faithful. Consequently, to show that it is an equivalence of $\infty $-categories, it will suffice to show that it is surjective on objects (Theorem 4.6.2.21). Fix a diagram $G_0: K \rightarrow \operatorname{\mathcal{C}}$ and a cartesian natural transformation $\gamma _0: G_0 \rightarrow F|_{K}$. Our assumption that $\operatorname{\mathcal{C}}$ admits $K$-indexed colimits guarantees that we can extend $G_0$ to a colimit diagram $G: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$. As above, the restriction map $\rho $ is a homotopy equivalence, hence a trivial Kan fibration; we can therefore extend $\gamma _0$ to a natural transformation $\gamma : G \rightarrow F$. Condition $(\ast )$ then guarantees that $\gamma $ is cartesian, so that the pair $(G,\gamma )$ is a lift of $(G_0, \gamma _0)$ to the $\infty $-category $\operatorname{Fun}( K^{\triangleright }, \operatorname{\mathcal{C}})_{ /F}^{\operatorname{Cart}}$. $\square$

Remark 7.7.2.20. Let $K$ be a simplicial set, let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits pullbacks and $K$-indexed colimits, and suppose we are given a diagram $\overline{F}: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$, carrying the cone point of $K^{\triangleright }$ to an object $C \in \operatorname{\mathcal{C}}$. Set $F = \overline{F}|_{K}$, so that $\overline{F}$ determines a natural transformation $\beta : F \rightarrow \underline{C}$. By virtue of Proposition 7.7.1.13 and Remark 7.1.3.6, $\overline{F}$ is a universal colimit diagram if and only if the following condition is satisfied:

$(a)$

Let $u: C' \rightarrow C$ be a morphism in $\operatorname{\mathcal{C}}$ and let $\sigma :$

\[ \xymatrix { F' \ar [d]^{ \gamma } \ar [r]^{ \beta ' } & \underline{C}' \ar [d]^{ \underline{u} } \\ F \ar [r]^{ \beta } & \underline{C} } \]

be a diagram in $\operatorname{Fun}(K, \operatorname{\mathcal{C}})$. If $\sigma $ is a levelwise pullback square, then $\beta '$ exhibits $C'$ as a colimit of $F'$.

Suppose this condition is satisfied. Corollary 7.7.2.19 then asserts that $\overline{F}$ is a strongly universal colimit diagram if and only if it satisfies the following converse of $(a)$:

$(b)$

For every diagram $\sigma $ as above, if $\beta '$ exhibits $C'$ as a colimit of $F'$ and $\gamma $ is cartesian, then $\sigma $ is a levelwise pullback square.

Remark 7.7.2.21. Let $K$ be a simplicial set, let $\operatorname{\mathcal{C}}$ be an let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits pullbacks and $K$-indexed colimits, and let $F: K \rightarrow \operatorname{\mathcal{C}}$ be a diagram. Stated more informally, Remark 7.7.2.20 asserts that that the colimit of $F$ is strongly universal if and only if the following conditions are satisfied:

$(a')$

For every morphism $C' \rightarrow C = \varinjlim (F)$ in $\operatorname{\mathcal{C}}$, the comparison map

\[ \varinjlim _{x \in K}( C' \times _{C} F(x) ) \rightarrow C' \times _{C} \varinjlim _{x \in K}( F(x) ) \simeq C' \]

is an isomorphism.

$(b')$

For every cartesian natural transformation $\gamma : F' \rightarrow F$, the diagram

\[ \xymatrix { F'(x) \ar [r] \ar [d] & \varinjlim (F) \ar [d] \\ F(x) \ar [r] & \varinjlim (F) } \]

is a pullback square for each vertex $x \in K$.

Example 7.7.2.22. Let $\operatorname{\mathcal{C}}$ be (the nerve of) the category of sets, and let $K = B_{\bullet }G$ be the classifying simplicial set of a group $G$ (see Construction 1.3.2.5). Then a diagram $F: K \rightarrow \operatorname{\mathcal{C}}$ can be identified with a set $X$ equipped with an action of the group $G$, and the colimit $\varinjlim (F)$ can be identified with the quotient set $X/G$. This colimit is always universal (Example 7.7.0.3). Applying Remark 7.7.2.21, we see that the colimit of $F$ is strongly universal if and only if the following condition is satisfied:

$(\ast )$

For every set $X'$ with an action of $G$ and every $G$-equivariant map $f: X' \rightarrow X$, the diagram of sets

\[ \xymatrix { X' \ar [r] \ar [d]^{f} & X'/G \ar [d] \\ X \ar [r] & X/G } \]

is a pullback square.

Beware that this condition is not automatic: it is satisfied if and only if $G$ acts freely on $X$.

Corollary 7.7.2.23. Let $K$ be a simplicial set and let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits pullbacks and $K$-indexed colimits. Then $K$-indexed colimits in $\operatorname{\mathcal{C}}$ are strongly universal if and only if the following condition is satisfied:

$(\ast )$

Let $\gamma : G \rightarrow F$ be a natural transformation between diagrams $G,F: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$, where $F$ is a colimit diagram and $\gamma |_{K}$ is cartesian. Then $\gamma $ is cartesian if and only if $G$ is a colimit diagram.

We now turn to the proof of Theorem 7.7.2.8. We will need some terminology.

Definition 7.7.2.24. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category, let $K$ be a simplicial set, and let $F: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ be a diagram carrying the cone point of $K^{\triangleright }$ to an object $C \in \operatorname{\mathcal{C}}$. Then the composite map

\[ (K^{\triangleright })^{\triangleright } \simeq K \star \Delta ^1 \twoheadrightarrow K \star \Delta ^0 = K^{\triangleright } \xrightarrow {F} \operatorname{\mathcal{C}} \]

determines a lift of $F$ to a diagram $\widetilde{F}: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}_{/C}$. We say that $F$ is a weak colimit diagram if $\widetilde{F}$ is a colimit diagram in the $\infty $-category $\operatorname{\mathcal{C}}_{/C}$.

Remark 7.7.2.25. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category, let $F: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ be a diagram carrying the cone point of $K^{\triangleright }$ to an object $C \in \operatorname{\mathcal{C}}$, and let $\widetilde{C}$ be the object of $\operatorname{\mathcal{C}}_{/C}$ corresponding to the identity morphism $\operatorname{id}_{C}: C \rightarrow C$. Let $\widetilde{F}: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}_{/C}$ be as in Definition 7.7.2.24 and let $\widetilde{F}_0 = \widetilde{F}|_{K}$, so that $\widetilde{F}$ determines a natural transformation $\beta $ from $\widetilde{F}_0$ to the constant diagram taking the value $\widetilde{C}$. The following conditions are equivalent:

$(1)$

The morphism $F$ is a weak colimit diagram: that is, $\widetilde{F}$ is a colimit diagram in the $\infty $-category $\operatorname{\mathcal{C}}_{/C}$.

$(2)$

The natural transformation $\beta $ exhibits $\widetilde{C}$ as a colimit of the diagram $\widetilde{F}_0$ in the $\infty $-category $\operatorname{\mathcal{C}}_{/C}$.

$(3)$

There exists a final object $X \in \operatorname{\mathcal{C}}_{/C}$ and a natural transformation $\widetilde{F}_0 \rightarrow \underline{X}$ which exhibits $X$ as a colimit of $\widetilde{F}_0$.

$(4)$

For any final object $X \in \operatorname{\mathcal{C}}_{/C}$, any natural transformation $\widetilde{F}_0 \rightarrow \underline{X}$ exhibits $X$ as a colimit of $\widetilde{F}_0$.

The equivalence $(1) \Leftrightarrow (2)$ follows from Remark 7.1.3.6 and the implications $(2) \Rightarrow (3)$ and $(4) \Rightarrow (2)$ follow from the observation that $X = \widetilde{C}$ is a final object of $\operatorname{\mathcal{C}}_{/C}$ (Proposition 4.6.7.22). The implication $(3) \Rightarrow (4)$ follows from the observation that if $X$ is a final object of $\operatorname{\mathcal{C}}_{/C}$, then the constant diagram $\underline{X}$ is a final object of the diagram $\infty $-category $\operatorname{Fun}(K, \operatorname{\mathcal{C}})$ (Proposition 7.1.7.2).

Proposition 7.7.2.26. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category, let $K$ be a simplicial set, and let $F: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ be a morphism. If $F$ is a colimit diagram, then it is a weak colimit diagram. The converse holds if $\operatorname{\mathcal{C}}$ admits finite products or if $\operatorname{\mathcal{C}}$ admits $K$-indexed colimits.

Proof. The first assertion follows from the observation that the forgetful functor $U: \operatorname{\mathcal{C}}_{/C} \rightarrow \operatorname{\mathcal{C}}$ is conservative and creates colimits (Proposition 7.1.4.20). To prove the converse, it will suffice to show that the functor $U$ preserves $K$-indexed colimits. If $\operatorname{\mathcal{C}}$ admits $K$-indexed colimits, this follows from Corollary 7.1.4.21. If $\operatorname{\mathcal{C}}$ admits finite products, then the functor $U$ has a right adjoint (given on objects by the construction $X \mapsto X \times C$; see Proposition 7.6.1.14) and therefore preserves $K$-indexed colits by virtue of Corollary 7.1.4.22. $\square$

Warning 7.7.2.27. The converse of Proposition 7.7.2.26 is false in general: a weak colimit diagram in an $\infty $-category $\operatorname{\mathcal{C}}$ need not be a colimit diagram. For a counterexample, see Warning 7.7.2.9.

Corollary 7.7.2.28. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits pullbacks and let $F: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ be a morphism of simplicial sets. The following conditions are equivalent:

$(1)$

The morphism $F$ is a weak colimit diagram.

$(2)$

For any object $C \in \operatorname{\mathcal{C}}$, any lift of $F$ to a morphism $\widetilde{F}: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}_{/C}$ is a colimit diagram in the slice $\infty $-category $\operatorname{\mathcal{C}}_{/C}$.

$(3)$

There exists an object $C \in \operatorname{\mathcal{C}}$ and a lift of $F$ to a colimit diagram $\widetilde{F}: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}_{/C}$.

Proof. The implication $(2) \Rightarrow (1) \Rightarrow (3)$ are immediate from the definitions. To prove the reverse implications, we note that if $\widetilde{F}: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}_{/C}$ is a lift of $F$, then $\widetilde{F}$ is a weak colimit diagram in $\operatorname{\mathcal{C}}_{/C}$ if and only if $F$ is a weak colimit diagram in $\operatorname{\mathcal{C}}$. It will therefore suffice to show that this condition is satisfied if and only if $\widetilde{F}$ is a colimit diagram in $\operatorname{\mathcal{C}}_{/C}$. This follows from Proposition 7.7.2.26, since the $\infty $-category $\operatorname{\mathcal{C}}_{/C}$ admits finite products (Corollary 7.6.2.17). $\square$

Remark 7.7.2.29. In the formulation of Corollary 7.7.2.28, we can replace the slice $\infty $-category $\operatorname{\mathcal{C}}_{/C}$ by the oriented fiber product $\operatorname{\mathcal{C}}\operatorname{\vec{\times }}_{\operatorname{\mathcal{C}}} \{ C\} $ (see Corollary 4.6.4.18).

Corollary 7.7.2.30. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits pullbacks, let $K$ be a simplicial set, and let $\beta : F' \rightarrow F$ be a natural transformation between diagrams $F',F: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$. Then $F'$ is a weak colimit diagram if and only if it satisfies the following condition:

$(\ast )$

Let $\gamma : G \rightarrow F$ be a cartesian natural transformation in $\operatorname{Fun}(K, \operatorname{\mathcal{C}})$. Then the restriction map

\[ \operatorname{Hom}_{ \operatorname{Fun}(K^{\triangleright }, \operatorname{\mathcal{C}})_{/F} }( F', G ) \rightarrow \operatorname{Hom}_{ \operatorname{Fun}(K,\operatorname{\mathcal{C}})_{/F|_{K}} }( F'|_{K}, G|_{K} ) \]

is a homotopy equivalence of Kan complexes.

Proof. Let $C \in \operatorname{\mathcal{C}}$ be the value of the diagram $F$ at the cone point of $K^{\triangleright }$, and let $\underline{C}: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ denote the constant diagram taking the value $C$. By virtue of Variant 7.7.1.14, a natural transformation $\gamma : G \rightarrow F$ is cartesian if and only if there exists a morphism $u: D \rightarrow C$ of $\operatorname{\mathcal{C}}$ and a pullback diagram

\[ \xymatrix { G \ar [d]^{\gamma } \ar [r] & \underline{D} \ar [d]^{ \underline{u} } \\ F \ar [r] & \underline{C}. } \]

We may therefore assume without loss of generality that $F = \underline{C}$ is a constant diagram, and consider only constant natural transformations $\underline{u}: \underline{D} \rightarrow \underline{C}$ in the formulation of condition $(\ast )$.

Let $\widetilde{\operatorname{\mathcal{C}}}$ denote the oriented fiber product $\operatorname{\mathcal{C}}\operatorname{\vec{\times }}_{\operatorname{\mathcal{C}}} \{ C\} $. Then the pair $(F', \beta )$ can then be identified with a diagram $\widetilde{F}': K^{\triangleright } \rightarrow \operatorname{\mathcal{D}}$. $\beta $ then determines a lift of $F'$ to a diagram $\widetilde{F}: K^{\triangleright } \rightarrow \operatorname{\mathcal{D}}$. Let us abuse notation by writing $\underline{D}$ for the constant diagram $K^{\triangleright } \rightarrow \operatorname{\mathcal{D}}$ taking the value $D$ (regarded as an obejct of $\operatorname{\mathcal{D}}$ via the morphism $u$). Recall that Corollary 4.6.4.18 supplies an equivalence of the slice $\infty $-category $\operatorname{Fun}( K^{\triangleright }, \operatorname{\mathcal{C}})_{ / G }$ with the oriented fiber product

\[ \operatorname{Fun}( K^{\triangleright }, \operatorname{\mathcal{C}}) \operatorname{\vec{\times }}_{ \operatorname{Fun}( K^{\triangleright }, \operatorname{\mathcal{C}}) } \{ G\} \simeq \operatorname{Fun}( K^{\triangleright }, \operatorname{\mathcal{D}}) \]

and $\operatorname{Fun}( K, \operatorname{\mathcal{C}})_{ / G|_{K} }$ by $\operatorname{Fun}(K, \operatorname{\mathcal{D}})$. We can therefore reformulate condition $(\ast )$ as follows:

$(\ast ')$

For every object $D \in \operatorname{\mathcal{D}}$, the restriction map

\[ \operatorname{Hom}_{ \operatorname{Fun}(K^{\triangleright }, \operatorname{\mathcal{D}}) }( \widetilde{F}', \underline{D} ) \rightarrow \operatorname{Hom}_{ \operatorname{Fun}(K, \operatorname{\mathcal{D}})}( \widetilde{F}|_{K}, \underline{D}|_{K} ) \]

is a homotopy equivalence.

Using Corollary 7.1.6.14, we see that condition $(\ast ')$ is satisfied if and only if $\widetilde{F}'$ is a colimit diagram in the $\infty $-category $\operatorname{\mathcal{D}}$. By virtue of Corollary 7.7.2.28 (and Remark 7.7.2.29), this is equivalent to the condition that $F$ is a weak colimit diagram. $\square$

Corollary 7.7.2.31. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits pullbacks, and let $\operatorname{ev}_{1}: \operatorname{Fun}( \Delta ^1, \operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{C}}$ be the cartesian fibration given by evaluation at $1 \in \Delta ^1$. Then a morphism $F: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ satisfies descent for $\operatorname{ev}_{1}$ if and only if, for every cartesian natural transformation $\beta : F' \rightarrow F$, the morphism $F': K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ is a weak colimit diagram.

Proof. By virtue of Remark 7.7.2.11, $F$ is a descent diagram for $\operatorname{ev}_{1}$ if and only if, for every pair of cartesian transformations $\beta : F' \rightarrow F$ and $\gamma : G \rightarrow F$, the restriction map

\[ \operatorname{Hom}_{ \operatorname{Fun}(K^{\triangleright }, \operatorname{\mathcal{C}})_{ / F } }( F', G) \rightarrow \operatorname{Hom}_{ \operatorname{Fun}(K, \operatorname{\mathcal{C}})_{ / F|_{K} }}( F'|_{K}, G|_{K} ) \]

is a homotopy equivalence. If we regard $\beta $ as fixed and allow $\gamma $ to vary, this is equivalent to the requirement that $F'$ is a weak colimit diagram. Corollary 7.7.2.31 now follows by allowing $\beta $ to vary. $\square$

Proof of Theorem 7.7.2.8. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits pullbacks and let $F: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ be a universal colimit diagram. Then, for every cartesian natural transformation $\beta : F' \rightarrow F$, the morphism $F': K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ is a colimit diagram, and therefore a weak colimit diagram (Proposition 7.7.2.26). Applying Corollary 7.7.2.31, we deduce that $F$ is a descent diagram for the evaluation functor $\operatorname{ev}_{1}: \operatorname{Fun}(\Delta ^1, \operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{C}}$. The converse holds whenever every weak colimit diagram $F': K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ is a colimit diagram. By virtue of Proposition 7.7.2.26, this condition is satisfied if $\operatorname{\mathcal{C}}$ admits $K$-indexed colimits or finite products (which follows from the existence of a final object of $\operatorname{\mathcal{C}}$, since $\operatorname{\mathcal{C}}$ admits pullbacks: see Corollary 7.6.2.30). $\square$

We close this section by recording a few other consequences of Corollary 7.7.2.31.

Corollary 7.7.2.32. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits pullbacks and let $F: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ be a morphism. Then $F$ is a descent diagram for $\operatorname{ev}_{1}: \operatorname{Fun}(\Delta ^1, \operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{C}}$ if and only if the following condition is satisfied:

$(\ast )$

For every morphism $u: C' \rightarrow C$ of $\operatorname{\mathcal{C}}$ and every lift of $F$ to a diagram $\widetilde{F}: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}\operatorname{\vec{\times }}_{\operatorname{\mathcal{C}}} \{ C\} $, the composite map

\[ K^{\triangleright } \xrightarrow { \widetilde{F} } \operatorname{\mathcal{C}}\operatorname{\vec{\times }}_{\operatorname{\mathcal{C}}} \{ C \} \xrightarrow {u^{\ast }} \operatorname{\mathcal{C}}\operatorname{\vec{\times }}_{\operatorname{\mathcal{C}}} \{ C'\} \]

is a colimit diagram in the $\infty $-category $\operatorname{\mathcal{C}}\operatorname{\vec{\times }}_{\operatorname{\mathcal{C}}} \{ C'\} $.

Proof. Assume first that $F$ is a descent diagram for $\operatorname{ev}_{1}$. Fix a morphism $u: C' \rightarrow C$ and a lift of $F$ to a diagram $\widetilde{F}: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}\operatorname{\vec{\times }}_{ \operatorname{\mathcal{C}}} \{ C\} $, which we can identify with a natural transformation $\beta : F \rightarrow \underline{C}$. Then $u^{\ast } \circ \widetilde{F}$ can be identified with a diagram $F': K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ equipped with a natural transformation $\beta ': F' \rightarrow \underline{C}'$. Using the description of $u^{\ast }$ given by Proposition 7.6.2.20, we see that there is a levelwise pullback diagram

\[ \xymatrix { F' \ar [r]^{ \beta ' } \ar [d]^{\gamma } & \underline{C}' \ar [d]^{ \underline{u} } \\ F \ar [r]^{\beta } & \underline{C} } \]

in the $\infty $-category $\operatorname{Fun}(K,\operatorname{\mathcal{C}})$. It follows from Remark 7.7.1.11 and Example 7.7.1.6 that the natural transformation $\gamma $ is cartesian, so that $F'$ is a weak colimit diagram (Corollary 7.7.2.31). Applying Remark 7.7.2.29, we conclude that $u^{\ast } \circ \widetilde{F}$ is a colimit diagram in the $\infty $-category $\operatorname{\mathcal{C}}\operatorname{\vec{\times }}_{\operatorname{\mathcal{C}}} \{ C'\} $.

We now prove the converse. Assume that condition $(\ast )$ is satisfied; we wish to show that $F$ is a descent diagram for $\operatorname{ev}_{1}$. By virtue of Corollary 7.7.2.31, it will suffice to show that for every cartesian natural transformation $\gamma : F' \rightarrow F$, the morphism $F': K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ is a weak colimit diagram. Let $u: C' \rightarrow C$ denote the morphism of $\operatorname{\mathcal{C}}$ obtained by evaluating $\gamma $ at the cone point of $K^{\triangleright }$, so that Variant 7.7.1.14 supplies a levelwise pullback square $\sigma :$

7.83
\begin{equation} \begin{gathered}\label{equation:universal-colimit-preserved-by-base-change} \xymatrix { F' \ar [r]^{ \beta ' } \ar [d] & \underline{C}' \ar [d]^{ \underline{u} } \\ F \ar [r]^{\beta } & \underline{C} } \end{gathered} \end{equation}

in the $\infty $-category $\operatorname{Fun}( K^{\triangleright }, \operatorname{\mathcal{C}})$. Let us identify the lower and upper halves of (7.83) with diagrams $\widetilde{F}: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}\operatorname{\vec{\times }}_{\operatorname{\mathcal{C}}} \{ C\} $ and $\widetilde{F}': K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}\operatorname{\vec{\times }}_{\operatorname{\mathcal{C}}} \{ C' \} $. Since $\sigma $ is a levelwise pullback square, we can identify $\widetilde{F}'$ with the composition $u^{\ast } \circ \widetilde{F}$ (Proposition 7.6.2.20). Invoking assumption $(\ast )$, we see that $\overline{F}'$ is a colimit diagram in the $\infty $-category $\operatorname{\mathcal{C}}\operatorname{\vec{\times }}_{\operatorname{\mathcal{C}}} \{ C' \} $: that is, $F'$ is a weak colimit diagram. $\square$

Corollary 7.7.2.33. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits pullbacks and let $K$ be a simplicial set. The following conditions are equivalent:

$(1)$

Every weak colimit diagram $F: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ is a descent diagram for the evaluation functor $\operatorname{ev}_{1}: \operatorname{Fun}( \Delta ^1, \operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{C}}$.

$(2)$

For every morphism $u: C' \rightarrow C$ of $\operatorname{\mathcal{C}}$, the pullback functor

\[ u^{\ast }: \operatorname{\mathcal{C}}_{/C} \rightarrow \operatorname{\mathcal{C}}_{/C'} \quad \quad X \mapsto C' \times _{C} X \]

preserves $K$-indexed colimits.

Corollary 7.7.2.34. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits pullbacks and let $K$ be a simplicial set. Assume either that $\operatorname{\mathcal{C}}$ has a final object or that $\operatorname{\mathcal{C}}$ admits $K$-indexed colimits. Then the following conditions are equivalent:

$(1)$

Every colimit diagram $F: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ is a universal colimit diagram.

$(2)$

For every morphism $u: C' \rightarrow C$ of $\operatorname{\mathcal{C}}$, the pullback functor

\[ u^{\ast }: \operatorname{\mathcal{C}}_{/C} \rightarrow \operatorname{\mathcal{C}}_{/C'} \quad \quad X \mapsto C' \times _{C} X \]

preserves $K$-indexed colimits.