Proposition 7.6.1.14. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category containing an object $X$. The following conditions are equivalent:
- $(1)$
For every object $Y \in \operatorname{\mathcal{C}}$, there exists a product of $X \times Y$ in the $\infty $-category $\operatorname{\mathcal{C}}$.
- $(2)$
The forgetful functor $U: \operatorname{\mathcal{C}}_{ / Y} \rightarrow \operatorname{\mathcal{C}}$ admits a right adjoint.
If these conditions are satisfied, then the right adjoint of $U$ is given on objects by the construction $Y \mapsto X \times Y$.