Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 7.7.2.28. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits pullbacks and let $F: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ be a morphism of simplicial sets. The following conditions are equivalent:

$(1)$

The morphism $F$ is a weak colimit diagram.

$(2)$

For any object $C \in \operatorname{\mathcal{C}}$, any lift of $F$ to a morphism $\widetilde{F}: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}_{/C}$ is a colimit diagram in the slice $\infty $-category $\operatorname{\mathcal{C}}_{/C}$.

$(3)$

There exists an object $C \in \operatorname{\mathcal{C}}$ and a lift of $F$ to a colimit diagram $\widetilde{F}: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}_{/C}$.

Proof. The implication $(2) \Rightarrow (1) \Rightarrow (3)$ are immediate from the definitions. To prove the reverse implications, we note that if $\widetilde{F}: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}_{/C}$ is a lift of $F$, then $\widetilde{F}$ is a weak colimit diagram in $\operatorname{\mathcal{C}}_{/C}$ if and only if $F$ is a weak colimit diagram in $\operatorname{\mathcal{C}}$. It will therefore suffice to show that this condition is satisfied if and only if $\widetilde{F}$ is a colimit diagram in $\operatorname{\mathcal{C}}_{/C}$. This follows from Proposition 7.7.2.26, since the $\infty $-category $\operatorname{\mathcal{C}}_{/C}$ admits finite products (Corollary 7.6.2.17). $\square$