Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

7.7.3 Cartesian Closed $\infty $-Categories

We begin by recalling some classical definitions.

Definition 7.7.3.1. Let $\operatorname{\mathcal{C}}$ be a category which admits finite products and let $X$, $Y$, and $M$ be objects of $\operatorname{\mathcal{C}}$. We say that a morphism $e: M \times X \rightarrow Y$ exhibits $M$ as an exponential of $Y$ by $X$ if, for every object $C \in \operatorname{\mathcal{C}}$, the composite map

\[ \operatorname{Hom}_{\operatorname{\mathcal{C}}}( C, M ) \xrightarrow {\times X} \operatorname{Hom}_{\operatorname{\mathcal{C}}}( C \times X, M \times X) \xrightarrow { e \circ } \operatorname{Hom}_{\operatorname{\mathcal{C}}}( C \times X, Y) \]

is a bijection.

We say that a category $\operatorname{\mathcal{C}}$ is cartesian closed if it admits finite products and, for every pair of objects $X,Y \in \operatorname{\mathcal{C}}$, there exists an object $M \in \operatorname{\mathcal{C}}$ and a morphism $e: M \times X \rightarrow Y$ which exhibits $M$ as an exponential of $Y$ by $X$.

Example 7.7.3.2. Let $X$ and $Y$ be sets, and let $M = \operatorname{Hom}_{\operatorname{Set}}( X, Y )$ denote the set of functions from $X$ to $Y$. Then the evaluation map

\[ \operatorname{ev}: M \times X \rightarrow Y \quad \quad (f,x) \mapsto f(x) \]

exhibits $M$ as an exponential of $Y$ by $X$ in the category of sets. In particular, the category of sets is cartesian closed.

Example 7.7.3.3. Let $X$ and $Y$ be simplicial sets and let $M = \operatorname{Fun}(X,Y)$ be the simplicial set introduced introduced in Construction 1.5.3.1. Then the evaluation map $\operatorname{ev}: M \times X \rightarrow Y$ exhibits $M$ as an exponential of $Y$ by $X$ in the category of simplicial sets (Proposition 1.5.3.2). In particular, the category of simplicial sets is cartesian closed. More generally, if $\operatorname{\mathcal{C}}\subseteq \operatorname{Set_{\Delta }}$ is any full subcategory which is closed under the formation of finite products and the operation $(X,Y) \mapsto \operatorname{Fun}(X,Y)$, then $\operatorname{\mathcal{C}}$ is also cartesian closed. For example, the category of Kan complexes $\operatorname{Kan}$ is cartesian closed (Corollary 3.1.3.4), and the category $\operatorname{QCat}$ of $\infty $-category is cartesian closed (Theorem 1.5.3.7).

Definition 7.7.3.1 has an obvious $\infty $-categorical counterpart.

Definition 7.7.3.4. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category category which admits finite products and let $X$, $Y$, and $M$ be objects of $\operatorname{\mathcal{C}}$. We say that a morphism $e: M \times X \rightarrow Y$ exhibits $M$ as an exponential of $Y$ by $X$ if, for every object $C \in \operatorname{\mathcal{C}}$, the composite map

\[ \operatorname{Hom}_{\operatorname{\mathcal{C}}}( C, M ) \xrightarrow {\times X} \operatorname{Hom}_{\operatorname{\mathcal{C}}}( C \times X, M \times X) \xrightarrow { [e] \circ } \operatorname{Hom}_{\operatorname{\mathcal{C}}}( C \times X, Y) \]

is a homotopy equivalence of Kan complexes.

We say that an $\infty $-category $\operatorname{\mathcal{C}}$ is cartesian closed if it admits finite products and, for every pair of objects $X,Y \in \operatorname{\mathcal{C}}$, there exists an object $M \in \operatorname{\mathcal{C}}$ and a morphism $e: M \times X \rightarrow Y$ which exhibits $M$ as an exponential of $Y$ by $X$.

Remark 7.7.3.5. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category category which admits finite products and let $X$ and $Y$ be objects of $\operatorname{\mathcal{C}}$. Then an object $M \in \operatorname{\mathcal{C}}$ is an exponential of $Y$ by $X$ if and only if it represents the functor

\[ \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{S}}\quad \quad C \mapsto \operatorname{Hom}_{\operatorname{\mathcal{C}}}( C \times X, Y ). \]

In particular, the object $M$ is unique up to isomorphism and depends functorially on $X$ and $Y$. To emphasize this dependence, we sometimes denote the object $M$ by $Y^{X}$.

Warning 7.7.3.6. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $Y$ be an object of $\operatorname{\mathcal{C}}$. We have now assigned two different meanings to the notation $Y^{X}$:

  • If $X$ is an object of $\operatorname{\mathcal{C}}$, then $Y^{X}$ can denote an exponential of $Y$ by $X$ (Definition 7.7.3.4), characterized by the existence of natural homotopy equivalences

    \[ \operatorname{Hom}_{\operatorname{\mathcal{C}}}( (-), Y^{X} ) \xrightarrow {\sim } \operatorname{Hom}_{\operatorname{\mathcal{C}}}( (-) \times X, Y). \]
  • If $X$ is a simplicial set, then $Y^{X}$ can denote a power of $Y$ by $X$ (Definition 7.1.2.1), characterized by the existence of natural homotopy equivalences

    \[ \operatorname{Hom}_{\operatorname{\mathcal{C}}}( (-), Y^{X} ) \xrightarrow {\sim } \operatorname{Fun}(X, \operatorname{Hom}_{\operatorname{\mathcal{C}}}( (-), Y) ). \]

Note that these are distinct notions in general. However, they agree in the special case where $\operatorname{\mathcal{C}}= \operatorname{\mathcal{S}}$ and $X$ is a Kan complex. Beware that they do not agree in the special case where $\operatorname{\mathcal{C}}= \operatorname{\mathcal{QC}}$ and $X$ is an $\infty $-category which is not a Kan complex.

Example 7.7.3.7. Let $\operatorname{\mathcal{C}}$ be a category which admits finite products, and let $e: M \times X \rightarrow Y$ be a morphism of $\operatorname{\mathcal{C}}$. Then $e$ exhibits $M$ as an exponential of $Y$ by $X$ (in the sense of Definition 7.7.3.1). if and only if it exhibits $M$ as an exponential of $Y$ by $X$ in the $\infty $-category $\operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$ (in the sense of Definition 7.7.3.4). In particular, the category $\operatorname{\mathcal{C}}$ is cartesian closed if and only if the $\infty $-category $\operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$ is cartesian closed.

Remark 7.7.3.8. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits finite products and let $e: M \times X \rightarrow Y$ be a morphism of $\operatorname{\mathcal{C}}$. If $e$ exhibits $M$ as an exponential of $Y$ by $X$ (in the sense of Definition 7.7.3.4, then the homotopy class $[e]$ exhibits $M$ as an exponential of $Y$ by $X$ in the homotopy category $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$ (in the sense of Definition 7.7.3.1). In particular, if the $\infty $-category $\operatorname{\mathcal{C}}$ is cartesian closed, then the homotopy category $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$ is cartesian closed. Beware that the converse is false in general.

Remark 7.7.3.9. Let $\operatorname{\mathcal{C}}$ be a cartesian closed category. Suppose that $\operatorname{\mathcal{C}}$ is equipped with a simplicial enrichment having the following properties:

$(1)$

The simplicial category $\operatorname{\mathcal{C}}$ is locally Kan: that is, for every pair of objects $C,X \in \operatorname{\mathcal{C}}$, the simplicial set $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(C,X)_{\bullet }$ is a Kan complex.

$(2)$

For every object $C \in \operatorname{\mathcal{C}}$ and every finite collection of objects $\{ X_ i \} _{i \in I}$ having product $X = \prod _{i \in I}$, the canonical map

\[ \operatorname{Hom}_{\operatorname{\mathcal{C}}}( C, X)_{\bullet } \rightarrow \prod _{i \in I} \operatorname{Hom}_{\operatorname{\mathcal{C}}}(C, X_ i)_{\bullet } \]

is an isomorphism of simplicial sets (rather than merely bijective on vertices).

$(3)$

Let $X$ and $Y$ be objects of $\operatorname{\mathcal{C}}$, and let $e: Y^{X} \times X \rightarrow Y$ exhibit $Y^{X}$ as an exponential of $Y$ by $X$. Then, for every object $C \in \operatorname{\mathcal{C}}$, the composite map

\[ \operatorname{Hom}_{\operatorname{\mathcal{C}}}(C, Y^{X})_{\bullet } \xrightarrow { \times X} \operatorname{Hom}_{\operatorname{\mathcal{C}}}(C \times X, Y^{X} \times X)_{\bullet } \xrightarrow { e \circ } \operatorname{Hom}_{\operatorname{\mathcal{C}}}(C \times X, Y)_{\bullet } \]

is an isomorphism of simplicial sets (rather than merely bijective on vertices).

Then the homotopy coherent nerve $\operatorname{\mathcal{D}}= \operatorname{N}_{\bullet }^{\operatorname{hc}}(\operatorname{\mathcal{C}})$ is a cartesian closed $\infty $-category. Condition $(1)$ guarantees that $\operatorname{\mathcal{D}}$ is an $\infty $-category (Theorem 2.4.5.1), condition $(2)$ guarantees that the inclusion map $\iota : \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) \hookrightarrow \operatorname{N}_{\bullet }^{\operatorname{hc}}(\operatorname{\mathcal{C}}) = \operatorname{\mathcal{D}}$ preserves finite products (Example 7.6.1.15), and condition $(3)$ guarantees that $\iota $ carries exponentials to exponentials (see Theorem 4.6.8.5.

Example 7.7.3.10. Let $\operatorname{Kan}$ denote the category of Kan complexes. Then $\operatorname{Kan}$ is a cartesian closed category (Example 7.7.3.3), and carries a simplicial enrichment which satisfies the hypotheses of Remark 7.7.3.9. It follows that the $\infty $-category of spaces $\operatorname{\mathcal{S}}= \operatorname{N}_{\bullet }^{\operatorname{hc}}(\operatorname{Kan})$ is cartesian closed.

Example 7.7.3.11. Let $\operatorname{QCat}$ denote the (cartesian closed) category of (small) $\infty $-categories (Example 7.7.3.3). Let us regard $\operatorname{QCat}$ as equipped with the simplicial enrichment given in Construction 5.5.4.1, with morphism spaces given by the formula

\[ \operatorname{Hom}_{\operatorname{QCat}}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})_{\bullet } = \operatorname{Fun}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})^{\simeq }. \]

This simplicial enrichment satisfies the hypotheses of Remark 7.7.3.9, so the $\infty $-category $\operatorname{\mathcal{QC}}= \operatorname{N}_{\bullet }^{\operatorname{hc}}( \operatorname{QCat})$ is cartesian closed.

Remark 7.7.3.12. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $X$ be an object of $\operatorname{\mathcal{C}}$. If $\operatorname{\mathcal{C}}$ admits finite products, then the forgetful functor $F: \operatorname{\mathcal{C}}_{/X} \rightarrow \operatorname{\mathcal{C}}$ admits a right adjoint $G: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{C}}_{/X}$ (Proposition 7.6.1.14). Moreover, the composition $(F \circ G): \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{C}}$ is given on objects by the construction $C \mapsto C \times X$. Applying Corollary 6.2.4.2, we see that the following conditions are equivalent:

$(1)$

For every object $Y \in \operatorname{\mathcal{C}}$, there exists an exponential $Y^{X} \in \operatorname{\mathcal{C}}$.

$(2)$

The functor $(F \circ G): \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{C}}$ admits a right adjoint $E: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{C}}$.

Moreover, if these conditions are satisfied, then the functor $E: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{C}}$ is given on objects by the construction $Y \mapsto Y^{X}$.

Proposition 7.7.3.13. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits finite limits, let $X$ be an object of $\operatorname{\mathcal{C}}$, let $F: \operatorname{\mathcal{C}}_{/X} \rightarrow \operatorname{\mathcal{C}}$ be the forgetful functor, and let $G: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{C}}_{/X}$ be the right adjoint to $F$. The following conditions are equivalent:

$(1)$

For every object $Y \in \operatorname{\mathcal{C}}$, there exists an exponential $Y^{X}$.

$(2)$

The functor $G$ admits a right adjoint $H: \operatorname{\mathcal{C}}_{/X} \rightarrow \operatorname{\mathcal{C}}$.

Proof. If condition $(2)$ is satisfied, then the composite functor $(F \circ G): \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{C}}$ also admits a right adjoint, given by the composition $(H \circ G): \operatorname{\mathcal{C}}_{/X} \rightarrow \operatorname{\mathcal{C}}_{/X}$ (Remark 6.2.1.8). Consequently, the implication $(2) \Rightarrow (1)$ follows from Remark 7.7.3.12 (and does not require the assumption that $\operatorname{\mathcal{C}}$ admits finite limits). We now prove the converse. Assume that condition $(1)$ is satisfied; we wish to show that the functor $G: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{C}}_{/X}$ admits a right adjoint. Let $\operatorname{\mathcal{D}}\subseteq \operatorname{\mathcal{C}}_{/X}$ denote the full subcategory spanned by those objects $\widetilde{Y}$ for which the functor $C \mapsto \operatorname{Hom}_{ \operatorname{\mathcal{C}}_{/X} }( G(C), \widetilde{Y} )$ is representable by an object of $\operatorname{\mathcal{C}}$. By virtue of Corollary 6.2.4.2, it will suffice to show that $\operatorname{\mathcal{D}}$ contains every object $\widetilde{Y}$ of $\operatorname{\mathcal{D}}$.

Let us identify $\widetilde{Y}$ with a morphism $u: Y \rightarrow X$ in the $\infty $-category $\operatorname{\mathcal{C}}$. Then $u$ lifts to a morphism $\widetilde{u}: \widetilde{Y} \rightarrow \widetilde{X}$ of $\operatorname{\mathcal{C}}_{/X}$, corresponding to the degenerate $2$-simplex

\[ \xymatrix { & X \ar [dr]^{\operatorname{id}} & \\ Y \ar [ur]^{u} \ar [rr]^{u} & & X } \]

in the $\infty $-category $\operatorname{\mathcal{C}}$. Let $\eta : \operatorname{id}_{ \operatorname{\mathcal{C}}_{/X} } \rightarrow G \circ F$ and $\epsilon : (F \circ G) \rightarrow \operatorname{id}_{\operatorname{\mathcal{C}}}$ be compatible unit and counit for an adjunction between $G$ and $F$. The we have a commutative diagram

7.84
\begin{equation} \begin{gathered}\label{equation:exponential-as-adjoint} \xymatrix { \widetilde{Y} \ar [r]^{\eta _{ \widetilde{Y}}} \ar [d]^{\widetilde{u}} & (G \circ F)( \widetilde{Y} ) \ar [d]^{ (G \circ F)(\widetilde{u})} \\ \widetilde{X} \ar [r]^{ \eta _{ \widetilde{X} }} & (G \circ F)(\widetilde{X} ) } \end{gathered} \end{equation}

in the $\infty $-category $\operatorname{\mathcal{C}}_{/X}$. Note that the image of (7.84) under the functor $F$ can be identified with the left side of a the commutative diagram

\[ \xymatrix { Y \ar [d]^{u} \ar [r] & Y \times X \ar [r]^{ \epsilon _{ Y }} \ar [d] & Y \ar [d]^{u} \\ X \ar [r] & X \times X \ar [r] & X, } \]

where the left square and outer rectangle are pullback squares. It follows from Proposition 7.6.2.28 that the left square is also a pullback, so that (7.84) is a pullback square in the $\infty $-category $\operatorname{\mathcal{C}}_{/X}$ (Corollary 7.1.6.19). Our assumption that $\operatorname{\mathcal{C}}$ admits finite limits guarantees that the subcategory $\operatorname{\mathcal{D}}\subseteq \operatorname{\mathcal{C}}_{/X}$ is closed under finite limits (Proposition 7.4.1.18). Consequently, to prove that $\widetilde{Y}$ belongs to $\operatorname{\mathcal{D}}$, it will suffice to show that the objects $\widetilde{X}$, $(G \circ F)( \widetilde{Y} )$, and $(G \circ F)( \widetilde{X})$ are contained in $\operatorname{\mathcal{D}}$. Note that each of these objects belongs to the essential image of the functor $G$ (the object $\widetilde{X}$ can obtained by applying $G$ to a final object of $\operatorname{\mathcal{C}}$). We are therefore reduced to proving that, for each object $Z \in \operatorname{\mathcal{C}}$, the functor

\[ C \mapsto \operatorname{Hom}_{ \operatorname{\mathcal{C}}_{/X} }( G(C), G(Z) ) \simeq \operatorname{Hom}_{ \operatorname{\mathcal{C}}}( (F \circ G)(C), Z) \simeq \operatorname{Hom}_{\operatorname{\mathcal{C}}}(C \times X, Z) \]

is representable by an object of $\operatorname{\mathcal{C}}$, which is a reformulation of assumption $(1)$. $\square$

We now consider a variant of Definition 7.7.3.4.

Definition 7.7.3.14. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. We say that $\operatorname{\mathcal{C}}$ is locally cartesian closed if, for every object $Y \in \operatorname{\mathcal{C}}$, the slice $\infty $-category $\operatorname{\mathcal{C}}_{/Y}$ is cartesian closed.

Remark 7.7.3.15. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category which is locally cartesian closed. Then, for every object $Y \in \operatorname{\mathcal{C}}$, the slice $\infty $-category $\operatorname{\mathcal{C}}_{/Y}$ is cartesian closed, and therefore admits finite products. Applying Corollary 7.6.2.17, we conclude that $\operatorname{\mathcal{C}}$ admits pullbacks.

Remark 7.7.3.16. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category which is locally cartesian closed. If $\operatorname{\mathcal{C}}$ has a final object $C$, then it is equivalent to the slice $\infty $-category $\operatorname{\mathcal{C}}_{ / C }$, and is therefore cartesian closed. Conversely, if $\operatorname{\mathcal{C}}$ is cartesian closed, then it has a final object (since it admits finite products). Beware that these conditions are not automatic: for example, the empty $\infty $-category $\operatorname{\mathcal{C}}= \emptyset $ is locally cartesian closed, but is not cartesian closed.

Proposition 7.7.3.17. The $\infty $-category of spaces $\operatorname{\mathcal{S}}$ is locally cartesian closed.

Proof. Let $S$ be a Kan complex; we wish to show that the slice $\infty $-category $\operatorname{\mathcal{S}}_{/S}$ is cartesian closed. Let $(\operatorname{Set_{\Delta }})_{/S}$ denote the category of simplicial sets $X$ equipped with a map $f: X \rightarrow S$ and let $\operatorname{KFib}(S)$ denote the full subcategory of $(\operatorname{Set_{\Delta }})_{/S}$ spanned by those objects where $f$ is a Kan fibration. We regard $\operatorname{KFib}(S)$ as a (locally Kan) simplicial category, whose homotopy coherent nerve can be identified with $(\operatorname{\mathcal{S}})_{/S}$ (see Example 5.5.2.23). We will show that the simplicial category $\operatorname{KFib}(S)$ satisfies the hypotheses of Remark 7.7.3.9.

Note that the category $(\operatorname{Set_{\Delta }})_{/S}$ is cartesian closed. If $X$ and $Y$ are simplicial sets equipped with morphisms $f: X \rightarrow S$ and $g: Y \rightarrow S$, then there is an exponential $M = Y^{X}$ in the category $(\operatorname{Set_{\Delta }})_{/S}$, whose $n$-simplices are given by pairs $(\sigma , \rho )$, where $\sigma : \Delta ^ n \rightarrow S$ is an $n$-simplex of $S$ and $\rho : \Delta ^ n \times _{S} X \rightarrow \Delta ^ n \times _{S} Y$ is a morphism which is compatible with the projection to $\Delta ^ n$. To complete the proof, it will suffice to show that if $f$ and $g$ are Kan fibrations, then the projection map $M \rightarrow S$ is also a Kan fibration. Let $\iota : A \hookrightarrow B$ be an anodyne morphism of simplicial sets; we wish to show that every lifting problem

7.85
\begin{equation} \begin{gathered}\label{equation:spaces-locally-cartesian-closed} \xymatrix { A \ar [r] \ar [d] & M \ar [d] \\ B \ar@ {-->}[ur] \ar [r] & S } \end{gathered} \end{equation}

admits a solution. Invoking the universal property of $M$, we can rewrite (7.85) as a lifting problem

\[ \xymatrix { A \times _{S} X \ar [d]^{\iota _{X}} \ar [r] & Y \ar [d]^{g} \\ B \times _{S} X \ar [r] \ar@ {-->}[ur] \ar [r] & S. } \]

Since $g$ is a Kan fibration, we are reduced to showing that the morphism $\iota _{X}$ is a weak homotopy equivalence. This follows from Proposition 3.4.0.2, since $\iota $ is a weak homotopy equivalence and $f$ is a Kan fibration. $\square$

Warning 7.7.3.18. The $\infty $-category $\operatorname{\mathcal{QC}}$ of small $\infty $-categories is cartesian closed (Example 7.7.3.11), but is not locally cartesian closed.

Proposition 7.7.3.19. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. Then $\operatorname{\mathcal{C}}$ is locally cartesian closed if and only if it admits pullbacks and, for every morphism $f: X \rightarrow Y$ of $\operatorname{\mathcal{C}}$, the pullback functor $f^{\ast }: \operatorname{\mathcal{C}}_{/Y} \rightarrow \operatorname{\mathcal{C}}_{/X}$ admits a right adjoint.

Proof. By virtue of Remark 7.7.3.15, we may assume that $\operatorname{\mathcal{C}}$ admits pullbacks. Then, for every object $Y \in \operatorname{\mathcal{C}}$, the slice $\infty $-category $\operatorname{\mathcal{C}}_{/Y}$ admits finite limits (Example 7.6.2.31). Applying Proposition 7.7.3.13, we conclude that $\operatorname{\mathcal{C}}_{/Y}$ is cartesian closed if and only if, for every morphism $f: X \rightarrow Y$ of $\operatorname{\mathcal{C}}$, the pullback functor $f^{\ast }: \operatorname{\mathcal{C}}_{/Y} \rightarrow \operatorname{\mathcal{C}}_{/X}$ admits a right adjoint. Proposition 7.7.3.19 now follows by allowing the object $Y$ to vary. $\square$

Corollary 7.7.3.20. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category which is locally cartesian closed. Then every weak colimit diagram $K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ is a descent diagram for the evaluation functor $\operatorname{ev}_1: \operatorname{Fun}( \Delta ^1, \operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{C}}$.

Proof. By virtue of Corollary 7.7.2.33, it will suffice to show that for every morphism $f: X \rightarrow Y$ of $\operatorname{\mathcal{C}}$, the pullback functor $f^{\ast }: \operatorname{\mathcal{C}}_{/Y} \rightarrow \operatorname{\mathcal{C}}_{/X}$ preserves $K$-indexed colimits. This follows from Corollary 7.1.4.22, since the functor $f^{\ast }$ has a right adjoint (Proposition 7.7.3.19). $\square$

Corollary 7.7.3.21. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category which is locally cartesian closed and let $K$ be a simplicial set. Assume either that $\operatorname{\mathcal{C}}$ has a final object or that it admits $K$-indexed colimits. Then $K$-indexed colimits in $\operatorname{\mathcal{C}}$ are universal.

Remark 7.7.3.22. We will see later that the converse of Corollary 7.7.3.21 is true if the $\infty $-category $\operatorname{\mathcal{C}}$ satisfies suitable set-theoretic assumptions; see Proposition .

Corollary 7.7.3.23. Colimits are universal in the $\infty $-category of spaces $\operatorname{\mathcal{S}}$.