7.7.4 Disjoint Coproducts
Let $\operatorname{\mathcal{C}}$ be a category containing a collection of objects $\{ X_ i \} _{i \in I}$. Recall that a coproduct of $\{ X_ i \} _{i \in I}$ is an object $X \in \operatorname{\mathcal{C}}$ equipped with a collection of morphisms $\{ f_ i: X_ i \rightarrow X \} _{i \in I}$ satisfying the following universal property: for every object $Y \in \operatorname{\mathcal{C}}$, the map
\[ \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y) \rightarrow \prod _{i \in I} \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X_ i, Y) \quad \quad g \mapsto \{ g \circ f_ i \} _{i \in I} \]
is a bijection. In the special case where $\operatorname{\mathcal{C}}= \operatorname{Set}$ is the category of sets, this is equivalent to requirement that the functions $\{ f_ i \} _{i \in I}$ exhibit $X$ as a disjoint union of the collection $\{ X_ i \} _{i \in I}$ in the following sense:
- $(1)$
Each of the functions $f_ i$ is injective, and therefore identifies $X_ i$ with a subset $\operatorname{im}(f_ i) \subseteq X$.
- $(2)$
The functions $f_ i$ have disjoint images: for $i \neq j$, the intersection $\operatorname{im}(f_ i) \cap \operatorname{im}(f_ j)$ is empty.
- $(3)$
The union $\bigcup _{i \in I} \operatorname{im}(f_ i)$ coincides with $X$.
Note that the first two of these conditions can be formulated in purely categorical terms: condition $(1)$ asserts that each $f_ i$ is a monomorphism in the category $\operatorname{\mathcal{C}}= \operatorname{Set}$, and condition $(2)$ asserts that the fiber product $X_ i \times _{X} X_ j$ is an initial object of $\operatorname{\mathcal{C}}= \operatorname{Set}$ for $i \neq j$. This motivates the following:
Definition 7.7.4.1. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. We say that a collection of objects $\{ X_ i \} _{i \in I}$ have a disjoint coproduct if the following conditions are satisfied:
- $(0)$
There exists an object $X \in \operatorname{\mathcal{C}}$ and a collection of morphisms $\{ f_ i: X_ i \rightarrow X \} $ which exhibit $X$ as a coproduct of the collection $\{ X_ i \} _{i \in I}$ (Definition 7.6.1.3).
- $(1)$
For each $i \in I$, the morphism $f_ i: X_ i \rightarrow X$ is a monomorphism (Definition 9.3.4.1).
- $(2)$
For every pair of distinct elements $i,j \in I$, there exists a pullback $X_ i \times _{X} X_ j$, which is an initial object of $\operatorname{\mathcal{C}}$.
Definition 7.7.4.5. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. We say that $\operatorname{\mathcal{C}}$ has disjoint coproducts if it has an initial object and every pair of objects $X_0, X_1 \in \operatorname{\mathcal{C}}$ have a disjoint coproduct.
Example 7.7.4.6. Let $\operatorname{\mathcal{C}}$ be (the nerve of) the category of sets. Then $\operatorname{\mathcal{C}}$ has disjoint coproducts.
Example 7.7.4.7. Let $\operatorname{\mathcal{S}}$ be the $\infty $-category of spaces (Construction 5.5.1.1). The $\infty $-category $\operatorname{\mathcal{S}}$ has disjoint coproducts: if $X_0$ and $X_1$ are Kan complexes, then the disjoint union $X = X_0 \amalg X_1$ is a coproduct of $X_0$ and $X_1$ in the $\infty $-category $\operatorname{\mathcal{S}}$ (Example 7.6.1.16). Here the inclusion maps $\iota _0: X_0 \hookrightarrow X$ and $\iota _1: X_1 \hookrightarrow X$ are monomorphisms in the $\infty $-category $\operatorname{\mathcal{S}}$ (Example 9.3.4.10), and the pullback diagram of simplicial sets
\[ \xymatrix { \emptyset \ar [r] \ar [d] & X_0 \ar [d] \\ X_1 \ar [r] & X } \]
is also homotopy pullback square (Example 3.4.1.3), and therefore determines a pullback diagram in the $\infty $-category $\operatorname{\mathcal{S}}$ (Example 7.6.3.2).
Variant 7.7.4.8. Let $\operatorname{\mathcal{QC}}$ denote the $\infty $-category of (small) $\infty $-categories (Construction 5.5.4.1). The $\infty $-category $\operatorname{\mathcal{QC}}$ has disjoint coproducts: if $\operatorname{\mathcal{C}}_0$ and $\operatorname{\mathcal{C}}_1$ are small $\infty $-categories, then the disjoint union $\operatorname{\mathcal{C}}= \operatorname{\mathcal{C}}_0 \amalg \operatorname{\mathcal{C}}_1$ is a coproduct of $\operatorname{\mathcal{C}}_0$ with $\operatorname{\mathcal{C}}_1$ in the $\infty $-category $\operatorname{\mathcal{QC}}$ (Example 7.6.1.17). The inclusion functors $\iota _0: \operatorname{\mathcal{C}}_0 \hookrightarrow \operatorname{\mathcal{C}}$ and $\iota _1: \operatorname{\mathcal{C}}_1 \hookrightarrow \operatorname{\mathcal{C}}$ are fully faithful, and are therefore monomorphisms in the $\infty $-category $\operatorname{\mathcal{QC}}$ (Corollary 9.3.4.34). Moreover, the pullback diagram of simplicial sets
\[ \xymatrix { \emptyset \ar [r] \ar [d] & \operatorname{\mathcal{C}}_0 \ar [d]^{\iota _0} \\ \operatorname{\mathcal{C}}_1 \ar [r]^{\iota _1} & \operatorname{\mathcal{C}}} \]
is also categorical pullback square (Corollary 4.5.2.27), and therefore determines a pullback diagram in the $\infty $-category $\operatorname{\mathcal{QC}}$ (Example 7.6.3.4).
Note that Definition 7.7.4.5 refers only to pairwise coproducts in the $\infty $-category $\operatorname{\mathcal{C}}$. However, it guarantees the corresponding condition for infinitary coproducts, provided that they exist:
Proposition 7.7.4.9. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category which has disjoint coproducts. Suppose that $\operatorname{\mathcal{C}}$ also admits $I$-indexed coproducts, for some set $I$. Then every collection of objects $\{ X_ i \} _{i \in I}$ of $\operatorname{\mathcal{C}}$ admits a disjoint coproduct.
Proof.
Since $\operatorname{\mathcal{C}}$ admits $I$-indexed coproducts, we can choose an object $X \in \operatorname{\mathcal{C}}$ and a collection of morphisms $\{ f_ i: X_ i \rightarrow X \} _{i \in I}$ which exhibits $X$ as a coproduct of $\{ X_ i \} _{i \in I}$. We first claim that, for each $i \in I$, the morphism $f_ i$ is a monomorphism. Note that the collection $\{ X_ j \} _{j \neq i}$ also has a coproduct $Y \in \operatorname{\mathcal{C}}$ (since it can be written as $I$-indexed coproduct, where we take one summand to be the initial object $\emptyset \in \operatorname{\mathcal{C}}$). The morphisms $\{ f_ j \} _{j \neq i}$ then determine a map $g: Y \rightarrow X$, and the morphisms $f_ i$ and $g$ exhibit $X$ as a coproduct of $X_ i$ with $Y$. Our assumption that $\operatorname{\mathcal{C}}$ has disjoint coproducts then guarantees $f_ i$ and $g$ are monomorphisms.
To complete the proof, it will suffice to show that if $i$ and $j$ are distinct elements of $I$, then every commutative diagram
7.87
\begin{equation} \begin{gathered}\label{equation:infinitary-disjoint-coproducts} \xymatrix { \emptyset \ar [r] \ar [d] & X_ i \ar [d]^{f_ i} \\ X_ j \ar [r]^{ f_ j } & X } \end{gathered} \end{equation}
is a pullback square (Remark 7.7.4.3). Note that (7.87) admits an essentially unique extension to a commutative diagram
\[ \xymatrix { \emptyset \ar [rr] \ar [dd] & & X_ i \ar [dd]^{f_ i} \ar [dl] \\ & X_ i \amalg X_ j \ar [dr]^{h} & \\ X_ j \ar [rr]^{ f_ j } \ar [ur] & & X, } \]
where the upper left region is a pushout square. Our assumption that coproducts in $\operatorname{\mathcal{C}}$ are disjoint guarantees that the upper left region is also a pullback square. Arguing as above, we see that $h$ exhibits $X_ i \amalg X_ j$ as a summand of $X$, and is therefore a monomorphism. The desired result now follows from Variant 9.3.4.20.
$\square$
Proposition 7.7.4.10. Let $I$ be a set and let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits pullbacks and $I$-indexed coproducts. Assume that $I$-indexed coproducts in $\operatorname{\mathcal{C}}$ are universal and that $\operatorname{\mathcal{C}}$ has a universal initial object $\emptyset $. Then the coproduct of a collection of objects $\{ X_ i \} _{i \in I}$ is strongly universal (in the sense of Definition 7.7.2.15) if and only if it disjoint (Definition 7.7.4.1).
Proof.
Choose a collection of morphisms $f_ i: X_ i \rightarrow X$ which exhibit $X$ as a coproduct of $\{ X_ i \} _{i \in I}$. Using Corollary 7.7.2.19, we see that the coproduct is strongly universal if and only if the following condition is satisfied:
- $(\ast )$
Suppose we are given a morphism $u: Y \rightarrow X$ and a collection of diagrams $\sigma _ i$:
\[ \xymatrix { Y_ i \ar [r]^{g_ i} \ar [d] & Y \ar [d]^{u} \\ X_ i \ar [r]^{ f_ i } & X } \]
in the $\infty $-category $\operatorname{\mathcal{C}}$. If the morphisms $g_ i$ exhibit $Y$ as a coproduct of $\{ Y_ i \} _{i \in I}$, then each $\sigma _ i$ is a pullback square.
Assume first that condition $(\ast )$ is satisfied. Fix an element $j \in I$, and let $\sigma _ j$ denote the commutative diagram
\[ \xymatrix { X_ j \ar [r]^{\operatorname{id}} \ar [d]^{\operatorname{id}} & X_ j \ar [d]^{ f_ j } \\ X_ j \ar [r]^{ f_ j } & X. } \]
For each $i \neq j$, we can choose a commutative diagram
\[ \xymatrix { \emptyset \ar [r] \ar [d] & X_ j \ar [d]^{ f_ j } \\ X_ i \ar [r]^{ f_ i } & X. } \]
Applying $(\ast )$ to the collection $\{ \sigma _ i \} _{i \in I}$, we conclude that each $\sigma _ i$ is a pullback square. In the case $i = j$, we conclude that $f_ j$ is a monomorphism (Remark 9.3.4.18), and for $i \neq j$ we conclude that the fiber product $X_ i \times _{X} X_ j$ is an initial object of $\operatorname{\mathcal{C}}$. Allowing $j$ to vary, we conclude that the morphisms $\{ f_ i: X_ i \rightarrow X \} $ exhibit $X$ as a disjoint coproduct of $\{ X_ i \} _{i \in I}$.
Now assume that the morphisms $f_{i}$ exhibit $X$ as a disjoint coproduct of $\{ X_ i \} _{i \in I}$, and suppose we are given a collection of commutative diagrams $\{ \sigma _ i \} _{i \in I}$ as in $(\ast )$. For each index $i \in I$, the diagram $\sigma _ i$ determines a comparison map $u: Y_ i \rightarrow X_ i \times _{X} Y$, and we wish to show that $u$ is an isomorphism. For each $j$, let $g'_{j}: X_ i \times _{X} Y_ j \rightarrow X_ i \times _{X} Y$ be the morphism obtained from $g_ j$ by pullback along $f_{i}$. Then $u$ factors as a composition
\[ Y_ i \xrightarrow {u'} X_ i \times _{X} Y_{i} \xrightarrow { g'_{i} } X_ i \times _{X} Y, \]
and our assumption that $f_ i$ is a monomorphism guarantees that $u'$ is an isomorphism (see Variant 9.3.4.20). Consequently, to show that $u$ is an isomorphism, it will suffice to show that $g'_{i}$ is an isomorphism. Since $I$-indexed coproducts are universal, the morphisms $\{ g'_{j} \} _{j \in I}$ exhibit $X_ i \times _{X} Y$ as a coproduct of the collection $\{ X_ i \times _{X} Y_ j \} _{j \in I}$. It will therefore suffice to show that, for $j \neq i$, the fiber product $X_ i \times _{X} Y_ j$ is an initial object of $\operatorname{\mathcal{C}}$. Since $X_ i \times _{X} Y_ j$ admits a morphism to the initial object $X_ i \times _{X} X_ j$, this follows from our assumption that the initial object of $\operatorname{\mathcal{C}}$ is universal (Example 7.7.1.17).
$\square$
Corollary 7.7.4.11. Let $\kappa $ be an infinite cardinal and let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits pullbacks and $\kappa $-small coproducts. The following conditions are equivalent:
- $(1)$
In the $\infty $-category $\operatorname{\mathcal{C}}$, $\kappa $-small coproducts are strongly universal.
- $(2)$
In the $\infty $-category $\operatorname{\mathcal{C}}$, $\kappa $-small coproducts are universal and finite coproducts are strongly universal.
- $(3)$
In the $\infty $-category $\operatorname{\mathcal{C}}$, $\kappa $-small coproducts are universal and coproducts are disjoint.
Corollary 7.7.4.12. Small coproducts are strongly universal in the $\infty $-categories $\operatorname{\mathcal{S}}$ and $\operatorname{\mathcal{QC}}$.
Proof.
We will give the proof for $\operatorname{\mathcal{QC}}$; the analogous statement for the $\infty $-category $\operatorname{\mathcal{S}}$ is similar (but easier). By virtue of Variant 7.7.4.8, the $\infty $-category $\operatorname{\mathcal{QC}}$ has disjoint coproducts. It will therefore suffice to show that small coproducts in $\operatorname{\mathcal{QC}}$ are universal. Let $\{ \operatorname{\mathcal{C}}_ i \} _{i \in I}$ be a small collection of $\infty $-categories and let $\operatorname{\mathcal{C}}= \coprod _{i \in I} \operatorname{\mathcal{C}}_ i$ denote their coproduct, formed in the category of simplicial sets. For each $i \in I$, let $f_ i: \operatorname{\mathcal{C}}_ i \hookrightarrow \operatorname{\mathcal{C}}$ be the inclusion map. The collection $\{ f_ i \} _{i \in I}$ determines a morphism $f: \{ \operatorname{\mathcal{C}}_ i \} _{i \in I} \rightarrow \underline{\operatorname{\mathcal{C}}}$ in the $\infty $-category $\operatorname{Fun}(I, \operatorname{\mathcal{QC}})$, which exhibits $\operatorname{\mathcal{C}}$ as a coproduct of $\{ \operatorname{\mathcal{C}}_ i \} _{i \in I}$ in the $\infty $-category $\operatorname{\mathcal{QC}}$ (Example 7.6.1.17).
Suppose we are given a functor of $\infty $-categories $\operatorname{\mathcal{C}}' \rightarrow \operatorname{\mathcal{C}}$. For each $i \in I$, let $\operatorname{\mathcal{C}}'_{i}$ denote the inverse image of $\operatorname{\mathcal{C}}_{i}$ in $\operatorname{\mathcal{C}}'$, so that we have a pullback diagram
\[ \xymatrix { \operatorname{\mathcal{C}}'_{i} \ar [r]^{ f'_{i} } \ar [d] & \operatorname{\mathcal{C}}' \ar [d] \\ \operatorname{\mathcal{C}}_ i \ar [r]^{f_ i} & \operatorname{\mathcal{C}}} \]
in the category of simplicial sets. Since $f_{i}$ is an isofibration, this diagram is also a categorical pullback square (Corollary 4.5.2.27), and therefore determines a pullback diagram in the $\infty $-category $\operatorname{\mathcal{QC}}$ (Example 7.6.3.4). Allowing $i$ to vary, we obtain a levelwise pullback diagram
\[ \xymatrix { \{ \operatorname{\mathcal{C}}'_{i} \} _{i \in I} \ar [r]^{ f' } \ar [d] & \underline{ \operatorname{\mathcal{C}}' } \ar [d] \\ \{ \operatorname{\mathcal{C}}_ i \} _{i \in I} \ar [r]^{f} & \underline{\operatorname{\mathcal{C}}} } \]
in the $\infty $-category $\operatorname{Fun}(I, \operatorname{\mathcal{QC}})$. To complete the proof, it will suffice to show thatt $f'$ exhibits $\operatorname{\mathcal{C}}'$ as a coproduct of $\{ \operatorname{\mathcal{C}}'_ i \} _{i \in I}$ in the $\infty $-category $\operatorname{\mathcal{QC}}$, which follows from Example 7.6.1.17.
$\square$