Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Proposition 7.6.2.24. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $f: X \rightarrow Y$ be a morphism of $\operatorname{\mathcal{C}}$. The following conditions are equivalent:

$(1)$

There exists a functor $f^{\ast }: \operatorname{\mathcal{C}}_{/Y} \rightarrow \operatorname{\mathcal{C}}_{/X}$ given by pullback along $f$ (in the sense of Definition 7.6.2.22).

$(2)$

There exists a functor $f^{\ast }: \operatorname{\mathcal{C}}\operatorname{\vec{\times }}_{\operatorname{\mathcal{C}}} \{ Y\} \rightarrow \operatorname{\mathcal{C}}\operatorname{\vec{\times }}_{\operatorname{\mathcal{C}}} \{ X\} $ given by pullback along $f$ (in the sense of Variant 7.6.2.23).

$(3)$

The left vertical map of the pullback square

\[ \xymatrix { \Delta ^1 \times _{\operatorname{\mathcal{C}}} \Delta ^1 \ar [r] \ar [d] & \operatorname{Fun}( \Delta ^1, \operatorname{\mathcal{C}}) \ar [d]^{ \operatorname{ev}_1 } \\ \Delta ^{1} \ar [r]^{f} & \operatorname{\mathcal{C}}} \]

is a cartesian fibration of $\infty $-categories.

$(4)$

For every morphism $u: Y' \rightarrow Y$, there exists a pullback diagram

\[ \xymatrix { X' \ar [r] \ar [d] & Y' \ar [d]^{u} \\ X \ar [r]^{f} & Y } \]

in the $\infty $-category $\operatorname{\mathcal{C}}$.

Moreover, if these conditions are satisfied, then both pullback functors are given on objects by the construction $Y' \mapsto X \times _{Y} Y'$.

Proof. The equivalence $(1) \Leftrightarrow (2)$ follows from Proposition 5.3.7.6, the equivalence $(2) \Leftrightarrow (3)$ from Proposition 6.2.3.4, and the equivalence $(3) \Leftrightarrow (4)$ from Propositions 7.6.2.20. $\square$