Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 7.6.2.25. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. The following conditions are equivalent:

$(1)$

For every morphism $f: X \rightarrow Y$ of $\operatorname{\mathcal{C}}$, the composition functor

\[ \operatorname{\mathcal{C}}_{/X} \rightarrow \operatorname{\mathcal{C}}_{/Y} \quad \quad e \mapsto (f \circ e) \]

of Example 4.3.6.15 admits a right adjoint.

$(2)$

For every morphism $f: X \rightarrow Y$ of $\operatorname{\mathcal{C}}$, the composition functor

\[ \operatorname{\mathcal{C}}\operatorname{\vec{\times }}_{\operatorname{\mathcal{C}}} \{ X\} \rightarrow \operatorname{\mathcal{C}}\operatorname{\vec{\times }}_{\operatorname{\mathcal{C}}} \{ Y\} \quad \quad e \mapsto (f \circ e) \]

admits a right adjoint.

$(3)$

The evaluation functor $\operatorname{ev}_{1}: \operatorname{Fun}(\Delta ^1, \operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{C}}$ is a locally cartesian fibration of $\infty $-categories.

$(3')$

The evaluation functor $\operatorname{ev}_{1}: \operatorname{Fun}(\Delta ^1, \operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{C}}$ is a cartesian fibraton of $\infty $-categories.

$(4)$

The $\infty $-category $\operatorname{\mathcal{C}}$ admits pullbacks.

Proof. The equivalences $(1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4)$ follow from Proposition 7.6.2.24 by allowing the morphism $f$ to vary. The equivalence of $(3)$ and $(3')$ follows from Proposition 7.6.2.20. $\square$