Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 7.7.2.34. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits pullbacks and let $K$ be a simplicial set. Assume either that $\operatorname{\mathcal{C}}$ has a final object or that $\operatorname{\mathcal{C}}$ admits $K$-indexed colimits. Then the following conditions are equivalent:

$(1)$

Every colimit diagram $F: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ is a universal colimit diagram.

$(2)$

For every morphism $u: C' \rightarrow C$ of $\operatorname{\mathcal{C}}$, the pullback functor

\[ u^{\ast }: \operatorname{\mathcal{C}}_{/C} \rightarrow \operatorname{\mathcal{C}}_{/C'} \quad \quad X \mapsto C' \times _{C} X \]

preserves $K$-indexed colimits.