# Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$

Proposition 7.1.3.14. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a conservative functor of $\infty$-categories and let $K$ be a simplicial set.

• Suppose that $\operatorname{\mathcal{C}}$ admits $K$-indexed limits and the functor $F$ preserves $K$-indexed limits. Then a morphism $\overline{u}: K^{\triangleleft } \rightarrow \operatorname{\mathcal{C}}$ is a limit diagram in $\operatorname{\mathcal{C}}$ if and only if $(F \circ \overline{u}): K^{\triangleleft } \rightarrow \operatorname{\mathcal{D}}$ is a limit diagram in $\operatorname{\mathcal{D}}$.

• Suppose that $\operatorname{\mathcal{C}}$ admits $K$-indexed colimits and the functor $F$ preserves $K$-indexed colimits. Then a morphism $\overline{u}: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ is a colimit diagram in $\operatorname{\mathcal{C}}$ if and only if $(F \circ \overline{u}): K^{\triangleright } \rightarrow \operatorname{\mathcal{D}}$ is a colimit diagram in $\operatorname{\mathcal{D}}$.