Proposition 7.7.1.19. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category, let $\overline{\mathscr {F}}: K^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ be a morphism, and define $\beta : \mathscr {F} \rightarrow \underline{C}$ as above. The following conditions are equivalent:
- $(1)$
The morphism $\overline{ \mathscr {F} }$ is a universal colimit diagram, in the sense of Definition 7.7.1.15.
- $(2)$
For every morphism $u: C' \rightarrow C$ in $\operatorname{\mathcal{C}}$ and every levelwise pullback diagram
7.82\begin{equation} \begin{gathered}\label{equation:universal-colimit-diagram-reformulated} \xymatrix { \mathscr {F}' \ar [r]^{ \beta ' } \ar [d] & \underline{C}' \ar [d]^{ \underline{u} } \\ \mathscr {F} \ar [r]^{\beta } & \underline{C} } \end{gathered} \end{equation}in the $\infty $-category $\operatorname{Fun}(K, \operatorname{\mathcal{C}})$, the natural transformation $\beta '$ exhibits $C'$ as a colimit of $\mathscr {F}'$