6.2.3 Correspondences
Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a cocartesian fibration of $\infty $-categories. To every morphism $e: C \rightarrow D$ of $\operatorname{\mathcal{C}}$, Proposition 5.2.2.8 supplies a covariant transport functor
\[ e_{!}: \operatorname{\mathcal{E}}_{C} = \{ C\} \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}\rightarrow \{ D \} \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}= \operatorname{\mathcal{E}}_{D}, \]
which is well-defined up to isomorphism. Our goal in this section is to show that $U$ is a cartesian fibration if and only if each of the functors $e_{!}: \operatorname{\mathcal{E}}_{C} \rightarrow \operatorname{\mathcal{E}}_{D}$ admits a right adjoint (Proposition 6.2.3.6). Moreover, if this condition is satisfied, then the right adjoint to $e_{!}$ is given by the contravariant transport functor $e^{\ast }: \operatorname{\mathcal{E}}_{D} \rightarrow \operatorname{\mathcal{E}}_{C}$ of Proposition 5.2.2.17. We begin by analyzing the special case $\operatorname{\mathcal{C}}= \Delta ^1$.
Lemma 6.2.3.1. Let $\operatorname{\mathcal{E}}$ be an $\infty $-category equipped with a functor $U: \operatorname{\mathcal{E}}\rightarrow \Delta ^1$, having fibers $\operatorname{\mathcal{E}}_0 = \{ 0\} \times _{\Delta ^1} \operatorname{\mathcal{E}}$ and $\operatorname{\mathcal{E}}_1 = \{ 1\} \times _{\Delta ^1} \operatorname{\mathcal{E}}$. Let $f: X \rightarrow Y$ be a morphism of $\operatorname{\mathcal{E}}$. Then:
The morphism $f$ exhibits $X$ as a $\operatorname{\mathcal{E}}_0$-coreflection of $Y$ (in the sense of Definition 6.2.2.1) if and only if $X$ belongs to $\operatorname{\mathcal{E}}_0$ and $f$ is $\pi $-cartesian.
The morphism $f$ exhibits $Y$ as a $\operatorname{\mathcal{E}}_1$-reflection of $X$ if and only if $Y$ belongs to $\operatorname{\mathcal{E}}_1$ and $f$ is $\pi $-cocartesian.
Proof.
This is a special case of Corollary 5.1.2.3.
$\square$
Corollary 6.2.3.2. Let $\operatorname{\mathcal{E}}$ be an $\infty $-category equipped with a functor $U: \operatorname{\mathcal{E}}\rightarrow \Delta ^1$. Then:
The functor $U$ is a cartesian fibration if and only if the full subcategory $\{ 0\} \times _{\Delta ^1} \operatorname{\mathcal{E}}\subseteq \operatorname{\mathcal{E}}$ is coreflective.
The functor $U$ is a cocartesian fibration if and only if the full subcategory $\{ 1\} \times _{\Delta ^1} \operatorname{\mathcal{E}}\subseteq \operatorname{\mathcal{E}}$ is reflective.
Proposition 6.2.3.4. Let $\operatorname{\mathcal{E}}$ be an $\infty $-category equipped with a cocartesian fibration $U: \operatorname{\mathcal{E}}\rightarrow \Delta ^1$, having fibers $\operatorname{\mathcal{E}}_0 = \{ 0\} \times _{\Delta ^1} \operatorname{\mathcal{E}}$ and $\operatorname{\mathcal{E}}_1 = \{ 1\} \times _{\Delta ^1} \operatorname{\mathcal{E}}$. Let $F: \operatorname{\mathcal{E}}_0 \rightarrow \operatorname{\mathcal{E}}_1$ be a functor given by covariant transport along the nondegenerate edge $e$ of $\Delta ^1$. Then the functor $F$ admits a right adjoint if and only if $U$ is a cartesian fibration. In this case, the right adjoint to $F$ is given by contravariant transport along $e$.
Proof.
Let $\iota _0: \operatorname{\mathcal{E}}_0 \hookrightarrow \operatorname{\mathcal{E}}$ and $\iota _1: \operatorname{\mathcal{E}}_1 \hookrightarrow \operatorname{\mathcal{E}}$ denote the inclusion maps. Since $U$ is a cocartesian fibration, $\operatorname{\mathcal{E}}_1$ is a reflective subcategory of $\operatorname{\mathcal{E}}$ (Corollary 6.2.3.2). Let $L: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{E}}_1$ be a $\operatorname{\mathcal{E}}_1$-reflection functor (Lemma 6.2.2.16). Without loss of generality, we may assume that the functor $F: \operatorname{\mathcal{E}}_{0} \rightarrow \operatorname{\mathcal{E}}_1$ factors as a composition $\operatorname{\mathcal{E}}_0 \xrightarrow {\iota _0} \operatorname{\mathcal{E}}\xrightarrow {L} \operatorname{\mathcal{E}}_1$ (Remark 6.2.3.3). Note that $L$ is a left adjoint to the inclusion $\iota _1: \operatorname{\mathcal{E}}_1 \hookrightarrow \operatorname{\mathcal{E}}$ (Proposition 6.2.2.17).
Suppose that $U$ is also a cartesian fibration, so that the subcategory $\operatorname{\mathcal{E}}_0 \subseteq \operatorname{\mathcal{E}}$ is coreflective (Corollary 6.2.3.2). Let $L': \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{E}}_0$ be a $\operatorname{\mathcal{E}}_0$-coreflection functor (Corollary 6.2.3.2), so that $L'$ can be regarded as a right adjoint to $\iota _0$ (Proposition 6.2.2.17). Invoking Remark 6.2.1.8, we conclude that the composite functor $F = L \circ \iota _0$ has a right adjoint $G$, given by the composition $L' \circ \iota _1 = L'|_{\operatorname{\mathcal{E}}_1}$. Moreover, Remark 6.2.3.3 guarantees that $G: \operatorname{\mathcal{E}}_1 \rightarrow \operatorname{\mathcal{E}}_0$ is given by contravariant transport along $e$.
We now prove the converse. Suppose that the functor $F: \operatorname{\mathcal{E}}_0 \rightarrow \operatorname{\mathcal{E}}_1$ admits a right adjoint $G: \operatorname{\mathcal{E}}_1 \rightarrow \operatorname{\mathcal{E}}_0$. Fix an object $Z \in \operatorname{\mathcal{E}}_1$; we wish to show that there exists an object $Y \in \operatorname{\mathcal{E}}_0$ and a $U$-cartesian morphism $f: Y \rightarrow Z$. Let $\epsilon : F \circ G \rightarrow \operatorname{id}_{\operatorname{\mathcal{E}}_1}$ be the counit of an adjunction between $F$ and $G$. Set $Y = G(Z)$, so that $\epsilon $ determines a morphism $\epsilon _{Z}: F(Y) \rightarrow Z$ in the $\infty $-category $\operatorname{\mathcal{E}}_1$. Let $\eta : \operatorname{id}_{\operatorname{\mathcal{E}}} \rightarrow L$ be a natural transformation which exhibits $L$ as a $\operatorname{\mathcal{E}}_1$-reflection functor, so that $\eta $ determines a morphism $\eta _{Y}: Y \rightarrow F(Y)$. Let $f: Y \rightarrow Z$ be a composition of $\eta _{Y}$ with $\epsilon _{Z}$. We will complete the proof by showing that $f$ is $U$-cartesian. To prove this, it will suffice to show that for every object $X \in \operatorname{\mathcal{E}}_0$, the composite map
\[ \operatorname{Hom}_{\operatorname{\mathcal{E}}_0}( X, Y) \xrightarrow { [\eta _ Y] \circ } \operatorname{Hom}_{\operatorname{\mathcal{E}}}(X, F(Y) ) = \operatorname{Hom}_{\operatorname{\mathcal{E}}}( X, (F \circ G)(Z)) \xrightarrow { [\epsilon _ Z] \circ } \operatorname{Map}_{\operatorname{\mathcal{E}}}( X, Z) \]
is an isomorphism in the homotopy category $\mathrm{h} \mathit{\operatorname{Kan}}$ (see Corollary 5.1.2.3). Unwinding the definitions, we see that this map factors as a composition
\[ \operatorname{Hom}_{\operatorname{\mathcal{E}}_0}( X, G(Z) ) \xrightarrow {F} \operatorname{Hom}_{\operatorname{\mathcal{E}}_1}( F(X), (F \circ G)(Z) ) \xrightarrow { [ \epsilon _ Z ] \circ } \operatorname{Hom}_{\operatorname{\mathcal{E}}_1}( F(X), Z ) \xrightarrow { \circ [\eta _ X] } \operatorname{Hom}_{\operatorname{\mathcal{E}}}(X,Z), \]
where the composition of the first two maps is an isomorphism in $\mathrm{h} \mathit{\operatorname{Kan}}$ because $\epsilon $ is the counit of an adjunction (see Proposition 6.2.1.17), and third is an isomorphism because $\eta _ X$ exhibits $F(X)$ as a $\operatorname{\mathcal{E}}_1$-reflection of $X$.
$\square$
Lemma 6.2.3.5. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a cocartesian fibration of simplicial sets and let $g: Y \rightarrow Z$ be an edge of $\operatorname{\mathcal{E}}$. Then $g$ is $U$-cartesian if and only if it is locally $U$-cartesian.
Proof.
By virtue of Remark 5.1.1.13, we may assume without loss of generality that $\operatorname{\mathcal{C}}= \Delta ^ n$ is a standard simplex. For $0 \leq i \leq n$, let $\operatorname{\mathcal{E}}_{i}$ denote the fiber $\{ i\} \times _{\Delta ^ n} \operatorname{\mathcal{E}}$, which we regard as a full subcategory of $\operatorname{\mathcal{E}}$. Set $j = U(Y)$ and $k = U(Z)$. We wish to show that, for every integer $0 \leq i \leq j$ and every object $X \in \operatorname{\mathcal{E}}_{i}$, composition with the homotopy class $[g]$ induces an isomorphism $\operatorname{Hom}_{\operatorname{\mathcal{E}}}( X, Y) \xrightarrow { [g] \circ } \operatorname{Hom}_{\operatorname{\mathcal{E}}}(X,Z)$ in the homotopy category of Kan complexes $\mathrm{h} \mathit{\operatorname{Kan}}$ (see Corollary 5.1.2.3). Since $U$ is a cocartesian fibration, we can choose a $U$-cocartesian morphism $f: X \rightarrow X'$, where $X'$ belongs to $\operatorname{\mathcal{E}}_{j}$. We conclude by observing that there is a commutative diagram
\[ \xymatrix@R =50pt@C=50pt{ \operatorname{Hom}_{\operatorname{\mathcal{E}}}(X', Y) \ar [r]^-{[g] \circ }_{\sim } \ar [d]^{ \circ [f]}_{\sim }& \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X', Z) \ar [d]^{\circ [f]}_{\sim } \\ \operatorname{Hom}_{\operatorname{\mathcal{E}}}( X, Y) \ar [r]^-{ [g] \circ } & \operatorname{Hom}_{\operatorname{\mathcal{E}}}(X, Z) } \]
in the homotopy category $\mathrm{h} \mathit{\operatorname{Kan}}$, where the upper horizontal map is an isomorphism by virtue of our assumption that $g$ is locally $U$-cartesian, and the vertical maps are isomorphisms by virtue of our assumption that $f$ is $U$-cocartesian (Corollary 5.1.2.3).
$\square$
Proposition 6.2.3.6. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a cocartesian fibration of simplicial sets. The following conditions are equivalent:
- $(1)$
The morphism $U$ is a cartesian fibration of simplicial sets.
- $(2)$
For every edge $e: C \rightarrow D$ of the simplicial set $\operatorname{\mathcal{C}}$, the covariant transport functor $e_{!}: \operatorname{\mathcal{E}}_{C} \rightarrow \operatorname{\mathcal{E}}_{D}$ of Notation 5.2.2.9 admits a right adjoint.
Moreover, if these conditions are satisfied and $e: C \rightarrow D$ is an edge of $\operatorname{\mathcal{C}}$, then the contravariant transport functor $e^{\ast }: \operatorname{\mathcal{E}}_{D} \rightarrow \operatorname{\mathcal{E}}_{C}$ of Notation 5.2.2.18 is right adjoint to $e_{!}$.
Proof.
Assume first that condition $(1)$ is satisfied and let $e: C \rightarrow D$ be an edge of the simplicial set $\operatorname{\mathcal{C}}$, which we identify with a morphism $\Delta ^1 \rightarrow \operatorname{\mathcal{C}}$. Applying Proposition 6.2.3.4 to the projection map $\Delta ^1 \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}\rightarrow \Delta ^1$, we deduce that the covariant transport functor $e_{!}: \operatorname{\mathcal{E}}_{C} \rightarrow \operatorname{\mathcal{E}}_{D}$ is right adjoint to the contravariant transport functor $e^{\ast } \operatorname{\mathcal{E}}_{D} \rightarrow \operatorname{\mathcal{E}}_{C}$, which proves $(2)$.
We now show that $(2)$ implies $(1)$. Let $e: C \rightarrow D$ be an edge of $\operatorname{\mathcal{C}}$, and let $Y$ be an object of the $\infty $-category $\operatorname{\mathcal{E}}_{D}$. If the covariant transport functor $e_{!}$ admits a right adjoint $e^{\ast }$, then Proposition 6.2.3.4 guarantees that the projection map $U_{e}: \Delta ^1 \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}\rightarrow \Delta ^1$ is a cartesian fibration. In particular, we can choose an object $X = e^{\ast }(Y)$ together with a locally $U$-cartesian edge $f: X \rightarrow Y$ satisfying $U(f) = e$. Applying Lemma 6.2.3.5, we conclude that $f$ is $U$-cartesian.
$\square$