Definition 7.6.5.1 (Towers). Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. A tower in $\operatorname{\mathcal{C}}$ is a functor $\operatorname{N}_{\bullet }( \operatorname{\mathbf{Z}}_{\geq 0}^{\operatorname{op}} ) \rightarrow \operatorname{\mathcal{C}}$. We say that $\operatorname{\mathcal{C}}$ admits sequential limits if every tower in $\operatorname{\mathcal{C}}$ has a limit, and that $\operatorname{\mathcal{C}}$ admits sequential colimits if every diagram $\operatorname{N}_{\bullet }( \operatorname{\mathbf{Z}}_{\geq 0} ) \rightarrow \operatorname{\mathcal{C}}$ has a colimit. We say that a functor of $\infty $-categories $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ preserves sequential limits if it preserves limits indexed by the simplicial set $\operatorname{N}_{\bullet }( \operatorname{\mathbf{Z}}_{\geq 0}^{\operatorname{op}} )$, and that it preserves sequential colimits if it preserves colimits indexed by the simplicial set $\operatorname{N}_{\bullet }( \operatorname{\mathbf{Z}}_{\geq 0} )$.
7.6.5 Sequential Limits and Colimits
Throughout this section, we let $\operatorname{\mathbf{Z}}_{\geq 0}$ denote the set of nonnegative integers, endowed with its usual ordering.
Notation 7.6.5.2. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. We will generally abuse notation by identifying a functor $X: \operatorname{N}_{\bullet }( \operatorname{\mathbf{Z}}_{\geq 0} ) \rightarrow \operatorname{\mathcal{C}}$ with the collection of objects $\{ X(n) \} _{n \geq 0}$ and morphisms $f_{n}: X(n+1) \rightarrow X(n)$ obtained by the evaluating $X$ on the edges of $\operatorname{N}_{\bullet }( \operatorname{\mathbf{Z}}_{\geq 0} )$ corresponding to ordered pairs of the form $(n,n+1)$; we will depict the pair $( \{ X(n) \} _{n \geq 0}, \{ f_ n \} _{n \geq 0} )$ as a diagram Similarly, we abuse notation by identifying towers $X: \operatorname{N}_{\bullet }( \operatorname{\mathbf{Z}}_{\geq 0}^{\operatorname{op}} ) \rightarrow \operatorname{\mathcal{C}}$ with diagrams
Beware that the convention of Notation 7.6.5.2 is slightly abusive: the simplicial set $\operatorname{N}_{\bullet }( \operatorname{\mathbf{Z}}_{\geq 0} )$ has nondegenerate simplices in every dimension, so a functor $X: \operatorname{N}_{\bullet }( \operatorname{\mathbf{Z}}_{\geq 0} ) \rightarrow \operatorname{\mathcal{C}}$ is not literally determined by its underlying diagram
However, the abuse is essentially harmless:
Remark 7.6.5.3. Let $\operatorname{Spine}[ \operatorname{\mathbf{Z}}_{\geq 0} ]$ denote the simplicial subset of $\operatorname{N}_{\bullet }( \operatorname{\mathbf{Z}}_{\geq 0} )$ whose $k$-simplices are sequences of nonnegative integers $(n_0, n_1, \cdots , n_ k )$ satisfying $n_0 \leq n_1 \leq \cdots \leq n_ k \leq n_0 + 1$. Then $\operatorname{Spine}[ \operatorname{\mathbf{Z}}_{\geq 0} ]$ is a $1$-dimensional simplicial set, which corresponds (under the equivalence of Proposition 1.1.6.9) to the directed graph $G$ indicated in the diagram Moreover, the linearly ordered set $(\operatorname{\mathbf{Z}}_{\geq 0}, \leq )$ can be identified with the path category $\operatorname{Path}[G]$ of Construction 1.3.7.1. It follows that the inclusion map $\operatorname{Spine}[ \operatorname{\mathbf{Z}}_{\geq 0} ] \hookrightarrow \operatorname{N}_{\bullet }( \operatorname{\mathbf{Z}}_{\geq 0} )$ is inner anodyne (Proposition 1.5.7.3). In particular, for any $\infty $-category $\operatorname{\mathcal{C}}$, the restriction map is a trivial Kan fibration (Theorem 1.5.7.1). Stated more informally, every sequence of composable morphisms admits an essentially unique extension to a functor $\operatorname{N}_{\bullet }( \operatorname{\mathbf{Z}}_{\geq 0} ) \rightarrow \operatorname{\mathcal{C}}$.
Example 7.6.5.4. Let $\operatorname{\mathcal{C}}$ be a locally Kan simplicial category, and suppose we are given a collection of objects $\{ X(n) \} _{n \geq 0}$ and morphisms $f_ n: X(n) \rightarrow X(n+1)$ in $\operatorname{\mathcal{C}}$. It follows from Remark 7.6.5.3 that the diagram can be extended to a functor $\operatorname{N}_{\bullet }( \operatorname{\mathbf{Z}}_{\geq 0} ) \rightarrow \operatorname{N}_{\bullet }^{\operatorname{hc}}(\operatorname{\mathcal{C}})$. In fact, there is a preferred choice of such an extension, which is uniquely determined by the requirement that it factors through the inclusion map $\operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) \hookrightarrow \operatorname{N}_{\bullet }^{\operatorname{hc}}(\operatorname{\mathcal{C}})$.
Remark 7.6.5.5. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category, and suppose we are given a tower $X: \operatorname{N}_{\bullet }( \operatorname{\mathbf{Z}}_{\geq 0}^{\operatorname{op}} ) \rightarrow \operatorname{\mathcal{C}}$, which we depict as a diagram having a limit $\varprojlim (X)$. Then, for every object $Y \in \operatorname{\mathcal{C}}$, the map of sets is surjective. To prove this, suppose we are given a collection of morphisms $g_ n: Y \rightarrow X(n)$ satisfying $[f_{n}] \circ [g_{n+1} ] = [ g_ n ]$ in the homotopy category $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$. Then, for each $n \geq 0$, we can choose a $2$-simplex $\sigma _ n$ in $\operatorname{\mathcal{C}}$ as indicated in the diagram Let $X_0$ denote the restriction of $X$ to the spine $\operatorname{Spine}[ \operatorname{\mathbf{Z}}_{\geq 0}^{\operatorname{op}} ] \subset \operatorname{N}_{\bullet }( \operatorname{\mathbf{Z}}_{\geq 0}^{\operatorname{op}} )$. Then the collection of $2$-simplices $\{ \sigma _ n \} _{n \geq 0}$ determines an extension of $X_0$ to a diagram $\overline{X}_0: \operatorname{Spine}[ \operatorname{\mathbf{Z}}_{\geq 0}^{\operatorname{op}} ]^{\triangleleft } \rightarrow \operatorname{\mathcal{C}}$ carrying the cone point to the object $Y$. The isomorphism class of this extension can be identified with a morphism $[g]: Y \rightarrow \varprojlim (X_0) \simeq \varprojlim (X)$ in the homotopy category $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$, which is a preimage of the sequence $\{ [g_ n] \} _{n \geq 0}$ under the function $\theta $.
Warning 7.6.5.6. In the situation of Remark 7.6.5.5, the map need not be injective. That is, the forgetful functor $\operatorname{\mathcal{C}}\rightarrow \operatorname{N}_{\bullet }( \mathrm{h} \mathit{\operatorname{\mathcal{C}}} )$ generally does not preserve sequential limits (or colimits).
Example 7.6.5.7. Fix a prime number $p$. For every integer $n \geq 0$, let $p^{n} \operatorname{\mathbf{Z}}$ denote the cyclic subgroup of $\operatorname{\mathbf{Z}}$ generated by $p^{n}$, so that we have a tower of classifying simplicial sets Then:
The tower (7.74) has a limit in the ordinary category of simplicial sets, given by the simplicial set $\Delta ^0$ (which we can identify with the classifying simplicial set for the trivial group $(0) = \bigcap _{n \geq 0} p^{n} \operatorname{\mathbf{Z}}$).
The simplicial set $\Delta ^0$ is also a limit of the tower (7.74) in the homotopy category $\mathrm{h} \mathit{\operatorname{Kan}}$.
In the $\infty $-category $\operatorname{\mathcal{S}}$, the tower (7.74) has a different limit, which has uncountably many connected components (see Remark ).
We now give some easy examples of sequential limits and colimits.
Example 7.6.5.8 (Sequential Colimits in $\operatorname{\mathcal{QC}}$). Suppose we are given a collection of $\infty $-categories $\{ \operatorname{\mathcal{C}}(n) \} _{n \geq 0}$ and functors $F_ n: \operatorname{\mathcal{C}}(n) \rightarrow \operatorname{\mathcal{C}}(n+1)$, which we view as a diagram Let $\varinjlim _{n} \operatorname{\mathcal{C}}(n)$ denote the colimit of this diagram (formed in the ordinary category of simplicial sets). Then $\varinjlim _{n} \operatorname{\mathcal{C}}(n)$ is also an $\infty $-category, which is also a colimit of the associated diagram $\operatorname{N}_{\bullet }( \operatorname{\mathbf{Z}}_{\geq 0} ) \rightarrow \operatorname{\mathcal{QC}}$. This is a special case of Corollary 9.1.7.3.
Variant 7.6.5.9 (Sequential Colimits in $\operatorname{\mathcal{S}}$). Suppose we are given a collection of Kan complexes $\{ X(n) \} _{n \geq 0}$ and morphisms $f_ n: X(n) \rightarrow X(n+1)$, which we view as a diagram Let $\varinjlim _{n} X(n)$ denote the colimit of this diagram (formed in the ordinary category of simplicial sets). Then $\varinjlim _{n} X(n)$ is also a Kan complex, which is also a colimit of the associated diagram $\operatorname{N}_{\bullet }( \operatorname{\mathbf{Z}}_{\geq 0} ) \rightarrow \operatorname{\mathcal{S}}$. See Variant 9.1.7.4.
Example 7.6.5.10 (Towers of Isofibrations). Suppose we are given a collection of $\infty $-categories $\{ \operatorname{\mathcal{C}}(n) \} _{n \geq 0}$ and functors $F_ n: \operatorname{\mathcal{C}}(n+1) \rightarrow \operatorname{\mathcal{C}}(n)$, which we view as a tower If each of the functors $F_{n}$ is an isofibration, then the limit $\varprojlim _{n} \operatorname{\mathcal{C}}(n)$ (formed in the ordinary category of simplicial sets) is also an $\infty $-category, which can be also be viewed as a limit of the associated tower $\operatorname{N}_{\bullet }( \operatorname{\mathbf{Z}}_{\geq 0}^{\operatorname{op}} ) \rightarrow \operatorname{\mathcal{QC}}$. This follows by combining Example 4.5.6.8, Example 7.5.5.3, and Proposition 7.5.5.7.
Variant 7.6.5.11 (Towers of Kan Fibrations). Suppose we are given a collection of Kan complexes $\{ X(n) \} _{n \geq 0}$ and morphisms $f_ n: X(n+1) \rightarrow X(n)$, which we view as a tower If each of the morphisms $f_ n$ is a Kan fibration, then the limit $\varprojlim _{n} X(n)$ (formed in the ordinary category of simplicial sets) is also a Kan complex, which can be also be viewed as a limit of the associated tower $\operatorname{N}_{\bullet }( \operatorname{\mathbf{Z}}_{\geq 0}^{\operatorname{op}} ) \rightarrow \operatorname{\mathcal{S}}$ (combine Example 7.6.5.10 with Remark 7.4.4.4).
Variant 7.6.5.12 (Limits of General Towers). Suppose we are given a sequence of $\infty $-categories $\{ \operatorname{\mathcal{C}}(n) \} _{n \geq 0}$ and functors $F_{n}: \operatorname{\mathcal{C}}(n+1) \rightarrow \operatorname{\mathcal{C}}(n)$, which we view as a tower If the functors $F_{n}$ are not assumed to be isofibrations, then the limit $\varprojlim _{n} \operatorname{\mathcal{C}}(n)$ (formed in the ordinary category of simplicial sets) might not be a limit of the associated tower in $\operatorname{\mathcal{QC}}$ (for example, $\varprojlim _{n} \operatorname{\mathcal{C}}(n)$ might fail to be an $\infty $-category). Nevertheless, we can always compute the relevant limit in $\operatorname{\mathcal{QC}}$ by replacing (7.75) by a levelwise equivalent diagram of $\infty $-categories in which the transition functors are isofibrations. For example, we can replace (7.75) by the isofibrant tower of iterated homotopy fiber products Let us denote the limit of this tower (in the category of simplicial sets) by It is an $\infty $-category whose objects can be identified with sequences of pairs $\{ (C_ n, \alpha _ n) \} _{n \geq 0}$, where each $C_{n}$ is an object of the $\infty $-category $\operatorname{\mathcal{C}}(n)$ and each $\alpha _{n}: F_{n}( C_{n+1} ) \xrightarrow {\sim } C_ n$ is an isomorphism in the $\infty $-category $\operatorname{\mathcal{C}}(n)$. Combining Example 7.6.5.10 with Remark 7.1.1.8, we see that it can be identified with a limit of the diagram (7.75) in the $\infty $-category $\operatorname{\mathcal{QC}}$.
Sequential limits are useful for building more complicated types of limits.
Proposition 7.6.5.13. Suppose we are given a diagram of simplicial sets having colimit $K$. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $f: K \rightarrow \operatorname{\mathcal{C}}$ be a diagram, corresponding to a compatible sequence of diagrams $f_ n: K(n) \rightarrow \operatorname{\mathcal{C}}$. Suppose that each of the diagrams $f_ n$ admits a limit in $\operatorname{\mathcal{C}}$. Then there exists a tower $X: \operatorname{N}_{\bullet }( \operatorname{\mathbf{Z}}_{\geq 0}^{\operatorname{op}} ) \rightarrow \operatorname{\mathcal{C}}$ with the following properties:
For each $n \geq 0$, the object $X(n) \in \operatorname{\mathcal{C}}$ is a limit of the diagram $f_ n$.
An object of $\operatorname{\mathcal{C}}$ is a limit of the diagram $f$ if and only if it is a limit of the tower $X$. In particular, the diagram $f$ has a limit if and only if the tower $X$ has a limit.
Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty $-categories which preserves the limits of each of the diagrams $f_ n$. Then $F$ preserves limits of the diagram $f$ if and only if it preserves limits of the tower $X$.
Corollary 7.6.5.14. Suppose we are given a diagram of simplicial sets having colimit $K$, and let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits sequential limits and $K(n)$-indexed limits, for each $n \geq 0$. Then $\operatorname{\mathcal{C}}$ admits $K$-indexed colimits. If $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ is a functor of $\infty $-categories which preserves sequential limits and $K(n)$-indexed limits for each $n \geq 0$, then it also preserves $K$-indexed limits.
Example 7.6.5.15. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits finite products. If $\operatorname{\mathcal{C}}$ admits sequential limits, then it also admits countable products. More precisely, for any countable collection of objects $\{ X_ n \} _{n \geq 0}$ of $\operatorname{\mathcal{C}}$, the product ${\prod }_{n \geq 0} X_{n}$ can be computed as the limit of a tower
We now establish a partial converse to Example 7.6.5.15. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits countable products, and suppose that we are given a tower
in $\operatorname{\mathcal{C}}$. Then the collection of morphisms $\{ f_ n \} _{n \geq 0}$ determine an endomorphism $f$ of the product $P = {\prod }_{n \geq 0} X(n)$, given informally by the composition
In this case, we can identify limits of the tower $X$ with equalizers of the pair of morphisms $f, \operatorname{id}_ P: P \rightarrow P$. We can formulate this assertion more precisely as follows:
Proposition 7.6.5.16 (Sequential Limits as Equalizers). Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $X: \operatorname{N}_{\bullet }( \operatorname{\mathbf{Z}}_{\geq 0}^{\operatorname{op}} ) \rightarrow \operatorname{\mathcal{C}}$ be a tower, which we identify with the diagram Suppose that there exists an object $P \in \operatorname{\mathcal{C}}$ equipped with morphisms $\{ q_ n: P \rightarrow X(n) \} _{n \geq 0}$ which exhibits $P$ as a product of the collection $\{ X(n) \} _{n \geq 0}$. Then:
There exists a morphism $f: P \rightarrow P$ with the property that, for each $n \geq 0$, the diagram
commutes in the homotopy category $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$. Moreover, the morphism $f$ is uniquely determined up to homotopy.
An object of $\operatorname{\mathcal{C}}$ is a limit of the tower $X$ if and only if it is an equalizer of the pair of morphisms $f, \operatorname{id}_{P}: P \rightarrow P$.
Proof. Assertion $(1)$ follows immediately from the definitions (see Warning 7.6.1.12). To prove $(2)$, let $M = \operatorname{\mathbf{Z}}_{\geq 0}$ denote the set of nonnegative integers, which we regard as a commutative monoid with respect to addition. Let $BM$ denote the associated category (consisting of a single object $E$ having endomorphism monoid $\operatorname{Hom}_{ BM}(E,E) = M$) and let $B_{\bullet } M$ denote the nerve of $BM$ (Construction 1.3.2.5). There is a functor of ordinary categories $(\operatorname{\mathbf{Z}}_{\geq 0}, \leq )^{\operatorname{op}} \rightarrow BM$ which is characterized by the requirement that, for every pair of nonnegative integers $m \leq n$, the induced map
carries the unique element of $\operatorname{Hom}_{\operatorname{\mathbf{Z}}_{\geq 0} }( m, n)$ to the difference $n-m \in M$. Passing to nerves, we obtain a functor of $\infty $-categories $U: \operatorname{N}_{\bullet }( \operatorname{\mathbf{Z}}_{\geq 0}^{\operatorname{op}} ) \rightarrow B_{\bullet } M$. The functor $U$ is a cartesian fibration, whose fiber over the vertex $E \in B_{\bullet } M$ can be identified with the discrete simplicial set $\{ 0, 1, 2, \cdots \} $. Applying Corollary 7.3.4.8, we deduce that there exists a functor $Y: B_{\bullet } M \rightarrow \operatorname{\mathcal{C}}$ and a natural transformation $\alpha : Y \circ U \rightarrow X$ which exhibits $Y$ as a right Kan extension of $X$ along $U$.
For every nonnegative integer $n$, $\alpha $ induces a morphism $\alpha _{n}: Y(E) \rightarrow X(n)$ in the $\infty $-category $\operatorname{\mathcal{C}}$. Using the criterion of Proposition 7.3.4.1, we see that the collection of morphisms $\{ \alpha _ n \} _{n \geq 0}$ exhibit $Y(E)$ as a product of the collection of objects $\{ X(n) \} _{n \geq 0}$. We may therefore assume without loss of generality that $P = Y(E)$ and $q_{n} = \alpha _ n$, for each $n \geq 0$. Let $f: P \rightarrow P$ be the morphism obtained by evaluating the functor $Y$ on the generator $1 \in M$. For each $n \geq 0$, the natural transformation $\alpha $ carries the edge $n+1 \rightarrow n$ of $\operatorname{N}_{\bullet }( \operatorname{\mathbf{Z}}_{\geq 0} )$ to a commutative diagram
in the $\infty $-category $\operatorname{\mathcal{C}}$, which witnesses the commutativity of the diagram (7.76) in the homotopy category $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$. Moreover, an object $C \in \operatorname{\mathcal{C}}$ is an equalizer of the pair of morphisms $f, \operatorname{id}_{P}: P \rightarrow P$ if and only if it is a limit of the diagram $Y$ (Variant 7.6.4.9). To prove $(2)$, it suffices to observe that this is equivalent to the requirement that $C$ is a limit of the tower $X$, which follows from Corollary 7.3.8.20. $\square$
Remark 7.6.5.17. In the situation of Proposition 7.6.5.16, suppose that $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ is a functor of $\infty $-categories which preserves the product of the collection $\{ X(n) \} _{n \geq 0}$. Then $F$ preserves limits of the tower $X$ if and only if it preserves equalizers of the pair of morphisms $f, \operatorname{id}_{P}: P \rightarrow P$.