Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Example 7.6.5.15. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits finite products. If $\operatorname{\mathcal{C}}$ admits sequential limits, then it also admits countable products. More precisely, for any countable collection of objects $\{ X_ n \} _{n \geq 0}$ of $\operatorname{\mathcal{C}}$, the product ${\prod }_{n \geq 0} X_{n}$ can be computed as the limit of a tower

\[ \cdots \rightarrow X_2 \times X_1 \times X_0 \rightarrow X_1 \times X_0 \rightarrow X_0. \]