Remark 7.6.5.3. Let $\operatorname{Spine}[ \operatorname{\mathbf{Z}}_{\geq 0} ]$ denote the simplicial subset of $\operatorname{N}_{\bullet }( \operatorname{\mathbf{Z}}_{\geq 0} )$ whose $k$-simplices are sequences of nonnegative integers $(n_0, n_1, \cdots , n_ k )$ satisfying $n_0 \leq n_1 \leq \cdots \leq n_ k \leq n_0 + 1$. Then $\operatorname{Spine}[ \operatorname{\mathbf{Z}}_{\geq 0} ]$ is a $1$-dimensional simplicial set, which corresponds (under the equivalence of Proposition 1.1.6.9) to the directed graph $G$ indicated in the diagram
Moreover, the linearly ordered set $(\operatorname{\mathbf{Z}}_{\geq 0}, \leq )$ can be identified with the path category $\operatorname{Path}[G]$ of Construction 1.3.7.1. It follows that the inclusion map $\operatorname{Spine}[ \operatorname{\mathbf{Z}}_{\geq 0} ] \hookrightarrow \operatorname{N}_{\bullet }( \operatorname{\mathbf{Z}}_{\geq 0} )$ is inner anodyne (Proposition 1.5.7.3).
In particular, for any $\infty $-category $\operatorname{\mathcal{C}}$, the restriction map
is a trivial Kan fibration (Theorem 1.5.7.1). Stated more informally, every sequence of composable morphisms
admits an essentially unique extension to a functor $\operatorname{N}_{\bullet }( \operatorname{\mathbf{Z}}_{\geq 0} ) \rightarrow \operatorname{\mathcal{C}}$.