Variant 7.6.5.12 (Limits of General Towers). Suppose we are given a sequence of $\infty $-categories $\{ \operatorname{\mathcal{C}}(n) \} _{n \geq 0}$ and functors $F_{n}: \operatorname{\mathcal{C}}(n+1) \rightarrow \operatorname{\mathcal{C}}(n)$, which we view as a tower
If the functors $F_{n}$ are not assumed to be isofibrations, then the limit $\varprojlim _{n} \operatorname{\mathcal{C}}(n)$ (formed in the ordinary category of simplicial sets) might not be a limit of the associated tower in $\operatorname{\mathcal{QC}}$ (for example, $\varprojlim _{n} \operatorname{\mathcal{C}}(n)$ might fail to be an $\infty $-category). Nevertheless, we can always compute the relevant limit in $\operatorname{\mathcal{QC}}$ by replacing (7.75) by a levelwise equivalent diagram of $\infty $-categories in which the transition functors are isofibrations. For example, we can replace (7.75) by the isofibrant tower of iterated homotopy fiber products
Let us denote the limit of this tower (in the category of simplicial sets) by
It is an $\infty $-category whose objects can be identified with sequences of pairs $\{ (C_ n, \alpha _ n) \} _{n \geq 0}$, where each $C_{n}$ is an object of the $\infty $-category $\operatorname{\mathcal{C}}(n)$ and each $\alpha _{n}: F_{n}( C_{n+1} ) \xrightarrow {\sim } C_ n$ is an isomorphism in the $\infty $-category $\operatorname{\mathcal{C}}(n)$. Combining Example 7.6.5.10 with Remark 7.1.1.8, we see that it can be identified with a limit of the diagram (7.75) in the $\infty $-category $\operatorname{\mathcal{QC}}$.