# Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$

### 8.3.3 Hom-Functors for $\infty$-Categories

Let $\operatorname{\mathcal{C}}$ be an $\infty$-category. In ยง4.6.1, we associated to every pair of objects $X,Y \in \operatorname{\mathcal{C}}$ a Kan complex $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)$ parametrizing morphisms from $X$ to $Y$. In this section, we will promote the construction $(X,Y) \mapsto \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)$ to a functor of $\infty$-categories.

Definition 8.3.3.1. Let $\operatorname{\mathcal{C}}$ be an $\infty$-category. We say that a profunctor

$\mathscr {H}: \operatorname{\mathcal{C}}^{\operatorname{op}} \times \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{S}}$

is a $\operatorname{Hom}$-functor for $\operatorname{\mathcal{C}}$ if it is a covariant transport representation for the twisted arrow coupling $\lambda : \operatorname{Tw}(\operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{C}}^{\operatorname{op}} \times \operatorname{\mathcal{C}}$.

Proposition 8.3.3.2 (Existence and Uniqueness). Let $\operatorname{\mathcal{C}}$ be an $\infty$-category. Then $\operatorname{\mathcal{C}}$ admits a $\operatorname{Hom}$-functor $\mathscr {H}: \operatorname{\mathcal{C}}^{\operatorname{op}} \times \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{S}}$ if and only if it is locally small. If this condition is satisfied, then $\mathscr {H}$ is uniquely determined up to isomorphism.

Proof. Combine Remark 8.3.5.3 with Corollary 5.6.0.6 (applied to the left fibration $\lambda : \operatorname{Tw}(\operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{C}}^{\operatorname{op}} \times \operatorname{\mathcal{C}}$). $\square$

Remark 8.3.3.3. Let $\operatorname{\mathcal{C}}$ be an $\infty$-category and let let $\mathscr {H}: \operatorname{\mathcal{C}}^{\operatorname{op}} \times \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{S}}$ be a $\operatorname{Hom}$-functor for $\operatorname{\mathcal{C}}$. Passing to homotopy categories, we obtain a functor $H: \mathrm{h} \mathit{\operatorname{\mathcal{C}}}^{\operatorname{op}} \times \mathrm{h} \mathit{\operatorname{\mathcal{C}}} \rightarrow \mathrm{h} \mathit{\operatorname{Kan}}$. It follows from Corollary 8.1.2.18 (and Remark 5.6.5.8) that $H$ is isomorphic to the functor $(X,Y) \mapsto \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)$ determined by the $\mathrm{h} \mathit{\operatorname{Kan}}$ enrichment of the homotopy category $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$ (see Construction 4.6.9.13). See Remark 8.3.5.4 for a more precise statement.

Example 8.3.3.4. Let $\operatorname{\mathcal{C}}$ be a category. The construction $(X,Y) \mapsto \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)$ determines a functor

$\mathscr {H}: \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})^{\operatorname{op}} \times \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) \rightarrow \operatorname{N}_{\bullet }(\operatorname{Set}) \subset \operatorname{\mathcal{S}}\quad \quad (X,Y) \mapsto \operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y),$

which is a $\operatorname{Hom}$-functor for the $\infty$-category $\operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$. For a more general statement, see Proposition 8.3.6.2.

Variant 8.3.3.5. Let $\kappa$ be an uncountable cardinal and let $\operatorname{\mathcal{S}}^{< \kappa }$ denote the $\infty$-category of $\kappa$-small spaces (Variant 5.5.4.12). Then an $\infty$-category $\operatorname{\mathcal{C}}$ admits a $\operatorname{Hom}$-functor

$\mathscr {H}: \operatorname{\mathcal{C}}^{\operatorname{op}} \times \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{S}}^{< \kappa }$

if and only if it is locally $\kappa$-small. If this condition is satisfied, then $\mathscr {H}$ is uniquely determined up to isomorphism.

Remark 8.3.3.6 (Duality). Let $\operatorname{\mathcal{C}}$ be an $\infty$-category, let $\mathscr {H}: \operatorname{\mathcal{C}}^{\operatorname{op}} \times \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{S}}$ be a functor, and let $\mathscr {H}': \operatorname{\mathcal{C}}\times \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{S}}$ be the functor obtained from $\mathscr {H}$ by transposing its arguments. If $\mathscr {H}$ is a $\operatorname{Hom}$-functor for $\operatorname{\mathcal{C}}$, then $\mathscr {H}'$ is a $\operatorname{Hom}$-functor for the opposite $\infty$-category $\operatorname{\mathcal{C}}^{\operatorname{op}}$.

Notation 8.3.3.7. Let $\operatorname{\mathcal{C}}$ be a locally small $\infty$-category. We will often use the notation $\operatorname{Hom}_{\operatorname{\mathcal{C}}}( -, - )$ to denote a $\operatorname{Hom}$-functor $\mathscr {H}: \operatorname{\mathcal{C}}^{\operatorname{op}} \times \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{S}}$. Beware that this convention introduces a slight potential for confusion. Given a pair of objects $X,Y \in \operatorname{\mathcal{C}}$, we have two potentially different definitions of $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)$:

$(a)$

The Kan complex $\{ X\} \operatorname{\vec{\times }}_{\operatorname{\mathcal{C}}} \{ Y\}$ of Construction 4.6.1.1, which is well-defined up to canonical isomorphism.

$(b)$

The Kan complex $\mathscr {H}(X,Y)$, which is only well-defined up to homotopy equivalence (since it depends on a choice of $\operatorname{Hom}$-functor $\mathscr {H}$).

However, the danger is slight: Remark 8.3.3.3 guarantees the existence of homotopy equivalences $\{ X\} \operatorname{\vec{\times }}_{\operatorname{\mathcal{C}}} \{ Y\} \simeq \mathscr {H}(X,Y)$, which can be chosen to depend functorially on $X$ and $Y$ (as morphisms in the homotopy category $\mathrm{h} \mathit{\operatorname{Kan}}$). Consequently, we can always modify the choice of $\operatorname{Hom}$-functor $\mathscr {H}$ to arrange that definitions $(a)$ and $(b)$ coincide (see Corollary 4.4.5.3).

Proposition 8.3.3.8. Let $\operatorname{\mathcal{C}}$ be an $\infty$-category and let $\mathscr {H}: \operatorname{\mathcal{C}}^{\operatorname{op}} \times \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{S}}$ be a $\operatorname{Hom}$-functor for $\operatorname{\mathcal{C}}$. Then $\mathscr {H}$ is a balanced profunctor (see Definition 8.3.2.18).

Proof. By virtue of Remark 8.3.2.19, it suffices to observe that the twisted arrow coupling $\operatorname{Tw}(\operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{C}}^{\operatorname{op}} \times \operatorname{\mathcal{C}}$ is balanced; see Example 8.2.6.2. $\square$

Definition 8.3.3.9. Let $\operatorname{\mathcal{C}}$ be an $\infty$-category and let

$h_{\bullet }: \operatorname{\mathcal{C}}\rightarrow \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}) \quad \quad Y \mapsto h_ Y$

be a functor. We say that $h_{\bullet }$ is a covariant Yoneda embedding for $\operatorname{\mathcal{C}}$ if the construction $(X,Y) \mapsto h_{Y}(X)$ is a $\operatorname{Hom}$-functor for $\operatorname{\mathcal{C}}$, in the sense of Definition 8.3.3.1. Similarly, we say that a functor

$h^{\bullet }: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{Fun}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{S}}) \quad \quad X \mapsto h^{X}$

is a contravariant Yoneda embedding for $\operatorname{\mathcal{C}}$ if the construction $(X,Y) \mapsto h^{X}(Y)$ is a $\operatorname{Hom}$-functor for $\operatorname{\mathcal{C}}$.

Remark 8.3.3.10 (Duality). A functor $h^{\bullet }: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{S}})$ is a contravariant Yoneda embedding for $\operatorname{\mathcal{C}}$ if and only if it is a covariant Yoneda embedding for the opposite $\infty$-category $\operatorname{\mathcal{C}}^{\operatorname{op}}$; see Remark 8.3.3.6.

Remark 8.3.3.11. Let $\operatorname{\mathcal{C}}$ be an $\infty$-category. By virtue of Proposition 8.3.3.2, the following conditions are equivalent:

• The $\infty$-category $\operatorname{\mathcal{C}}$ is locally small.

• The $\infty$-category $\operatorname{\mathcal{C}}$ admits a covariant Yoneda embedding $h_{\bullet }: \operatorname{\mathcal{C}}\rightarrow \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}})$.

• The $\infty$-category $\operatorname{\mathcal{C}}$ admits a contravariant Yoneda embedding $h^{\bullet }: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{Fun}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{S}})$.

If these conditions are satisfied, then the functors $h_{\bullet }$ and $h^{\bullet }$ are uniquely determined up to isomorphism. Moreover, for every object $X \in \operatorname{\mathcal{C}}$, the functor $h_{X}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{S}}$ is representable by $X$, and the functor $h^{X}: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{S}}$ is corepresentable by $X$ (Proposition 8.3.5.5).

Variant 8.3.3.12. Let $\kappa$ be an uncountable cardinal and let $\operatorname{\mathcal{S}}^{< \kappa }$ denote the $\infty$-category of $\kappa$-small spaces (see Variant 5.5.4.12). For every $\infty$-category $\operatorname{\mathcal{C}}$, the following conditions are equivalent:

• The $\infty$-category $\operatorname{\mathcal{C}}$ is locally $\kappa$-small.

• The $\infty$-category $\operatorname{\mathcal{C}}$ admits a covariant Yoneda embedding $h_{\bullet }: \operatorname{\mathcal{C}}\rightarrow \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}^{< \kappa } )$.

• The $\infty$-category $\operatorname{\mathcal{C}}$ admits a contravariant Yoneda embedding $h^{\bullet }: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{Fun}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{S}}^{< \kappa } )$.

See Variant 8.3.5.7.

Theorem 8.3.3.13 (Yoneda's Lemma for $\infty$-Categories). Let $\operatorname{\mathcal{C}}$ be a locally small $\infty$-category. Then the covariant and contravariant Yoneda embeddings

$h_{\bullet }: \operatorname{\mathcal{C}}\rightarrow \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}) \quad \quad h^{\bullet }: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{Fun}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{S}})$

are fully faithful functors, whose essential images are the full subcategories

$\operatorname{Fun}^{\mathrm{rep}}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}) \subseteq \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}) \quad \quad \operatorname{Fun}^{\mathrm{corep}}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{S}}) \subseteq \operatorname{Fun}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{S}})$

spanned by the representable and corepresentable functors, respectively.

Proof. By virtue of Corollary 8.3.2.20, this is a reformulation of Proposition 8.3.3.8. $\square$

We close this section by recording a simple observation about the Yoneda embedding.

Proposition 8.3.3.14. Let $\operatorname{\mathcal{C}}$ be a locally small $\infty$-category and let $h_{\bullet }: \operatorname{\mathcal{C}}\rightarrow \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}})$ be a covariant Yoneda embedding for $\operatorname{\mathcal{C}}$. Suppose we are given a diagram $\overline{f}: K^{\triangleleft } \rightarrow \operatorname{\mathcal{C}}$, where $K$ is a small simplicial set. The following conditions are equivalent:

$(1)$

The morphism $\overline{f}$ is a limit diagram in $\operatorname{\mathcal{C}}$.

$(2)$

The composition $h_{\bullet } \circ \overline{f}$ is a limit diagram in the $\infty$-category $\operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}})$.

Following the convention of Remark 4.7.0.5, we can regard Proposition 8.3.3.14 as a special case of the following more precise assertion (applied in the special case where $\kappa = \lambda$ is a strongly inaccessible cardinal):

Variant 8.3.3.15. Let $\lambda$ be an uncountable cardinal, let $\operatorname{\mathcal{C}}$ be a locally $\lambda$-small $\infty$-category, and let $h_{\bullet }: \operatorname{\mathcal{C}}\rightarrow \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}^{< \lambda })$ be a covariant Yoneda embedding for $\operatorname{\mathcal{C}}$. Let $\kappa = \mathrm{ecf}(\lambda )$ be the exponential cofinality of $\lambda$, let $K$ be a $\kappa$-small simplicial set, and let $\overline{f}: K^{\triangleleft } \rightarrow \operatorname{\mathcal{C}}$ be a diagram. Then the following conditions are equivalent:

$(1)$

The morphism $\overline{f}$ is a limit diagram in $\operatorname{\mathcal{C}}$.

$(2)$

The composition $h_{\bullet } \circ \overline{f}$ is a limit diagram in the $\infty$-category $\operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}^{< \lambda })$.

Proof. Since $K$ is $\kappa$-small, the $\infty$-category $\operatorname{\mathcal{S}}^{< \lambda }$ admits $K$-indexed limits (Example 7.6.7.4). For each object $X \in \operatorname{\mathcal{C}}$, let $\operatorname{ev}_{X}: \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}^{< \lambda }) \rightarrow \operatorname{\mathcal{S}}^{< \lambda }$ denote the functor given by evaluation at $X$. By virtue of Proposition 7.1.6.1, condition $(2)$ is equivalent to the requirement that for each object $X \in \operatorname{\mathcal{C}}$, the composition

$K^{\triangleleft } \xrightarrow { \overline{f} } \operatorname{\mathcal{C}}\xrightarrow { h_{\bullet } } \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}},\operatorname{\mathcal{S}}^{< \lambda }) \xrightarrow { \operatorname{ev}_{X} } \operatorname{\mathcal{S}}^{< \lambda }$

is a limit diagram in the $\infty$-category $\operatorname{\mathcal{S}}^{< \lambda }$. Since the composite functor $(\operatorname{ev}_{X} \circ h_{\bullet }): \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{S}}^{< \lambda }$ is corepresentable by $X$, the equivalence $(1) \Leftrightarrow (2)$ follows from Proposition 7.4.5.17 (and Remark 7.4.5.19). $\square$

Remark 8.3.3.16. In the situation of Variant 8.3.3.15, suppose that the $\infty$-category $\operatorname{\mathcal{C}}$ admits $K$-indexed limits. Then the $\infty$-category of representable functors $\operatorname{Fun}^{\mathrm{rep}}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}^{ < \lambda } )$ also admits $K$-indexed limits, which are preserved by the inclusion functor $\operatorname{Fun}^{\mathrm{rep}}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}^{ < \lambda } ) \hookrightarrow \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}^{ < \lambda } )$.

Corollary 8.3.3.17. Let $\operatorname{\mathcal{C}}$ be an $\infty$-category and let $\kappa$ be an infinite cardinal. Then there exists a fully faithful functor $F: \operatorname{\mathcal{C}}\rightarrow \widehat{\operatorname{\mathcal{C}}}$, where $\widehat{\operatorname{\mathcal{C}}}$ is $\kappa$-complete and $\kappa$-cocomplete. Moreover, we can arrange that $F$ preserves the limits of all $\kappa$-small diagrams which exist in $\operatorname{\mathcal{C}}$.

Proof. Using Remark 4.7.3.19, we can choose an uncountable cardinal $\lambda$ of exponential cofinality $\geq \kappa$. Enlarging $\lambda$ if necessary, we may assume that $\operatorname{\mathcal{C}}$ is locally $\lambda$-small. Let $\widehat{\operatorname{\mathcal{C}}}$ denote the $\infty$-category $\operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}^{< \lambda } )$ and let $F = h_{\bullet }$ be a covariant Yoneda embedding for $\operatorname{\mathcal{C}}$. Since $\operatorname{\mathcal{S}}^{< \lambda }$ is $\kappa$-complete and $\kappa$-cocomplete (Remark 7.4.5.7 and Variant 7.4.5.8), the $\infty$-category $\widehat{\operatorname{\mathcal{C}}}$ has the same property (Remark 7.6.7.5). Moreover, the functor $F$ is fully faithful (Theorem 8.3.3.13) and preserves limits of $\kappa$-small diagrams (Remark 8.3.3.16). $\square$