Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

8.6 Conjugate and Dual Fibrations

Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a cocartesian fibration of $\infty $-categories. For each object $C \in \operatorname{\mathcal{C}}$, we let $\operatorname{\mathcal{E}}_{C}$ denote the the fiber $U^{-1} \{ C\} = \{ C\} \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}$. In §5.2.5, we showed that this construction determines a functor

\[ \operatorname{hTr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}: \mathrm{h} \mathit{\operatorname{\mathcal{C}}} \rightarrow \mathrm{h} \mathit{\operatorname{QCat}} \quad \quad C \mapsto \operatorname{\mathcal{E}}_{C}, \]

which we refer to as the (covariant) homotopy transport representation of the cocartesian fibration $U$ (Construction 5.2.5.2). Similarly, if $U': \operatorname{\mathcal{E}}' \rightarrow \operatorname{\mathcal{C}}'$ is a cartesian fibration of $\infty $-categories, then the assignment $C \mapsto \operatorname{\mathcal{E}}'_{C}$ determines a functor

\[ \operatorname{hTr}_{ \operatorname{\mathcal{E}}' / \operatorname{\mathcal{C}}' }: \mathrm{h} \mathit{\operatorname{\mathcal{C}}'}^{\operatorname{op}} \rightarrow \mathrm{h} \mathit{\operatorname{QCat}} \quad \quad C \mapsto \operatorname{\mathcal{E}}'_{C} \]

which we refer to as the (contravariant) homotopy transport representaiton of the cartesian fibration $U$ (Construction 5.2.5.7). There is an obvious relationship between these constructions. If $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ is a cocartesian fibration, then the opposite map $U^{\operatorname{op}}: \operatorname{\mathcal{E}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{C}}^{\operatorname{op}}$ is a cartesian fibration, and the homotopy transport representations $\operatorname{hTr}_{ \operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}$ and $\operatorname{hTr}_{\operatorname{\mathcal{E}}^{\operatorname{op}}/\operatorname{\mathcal{C}}^{\operatorname{op}}}$ are interchanged by composing with the automorphism

\[ \sigma : \mathrm{h} \mathit{\operatorname{QCat}} \rightarrow \mathrm{h} \mathit{\operatorname{QCat}} \quad \quad \operatorname{\mathcal{A}}\mapsto \operatorname{\mathcal{A}}^{\operatorname{op}}. \]

In this section, we show that the passage from a cocartesian fibration $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ to the opposite cartesian fibration $U^{\operatorname{op}}: \operatorname{\mathcal{E}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{C}}^{\operatorname{op}}$ can be broken into two steps:

  • To every cocartesian fibration $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$, we will associate another cocartesian fibration $U^{\vee }: \operatorname{\mathcal{E}}^{\vee } \rightarrow \operatorname{\mathcal{C}}$ which we refer to as the cocartesian dual of $U$, whose (covariant) homotopy transport representation is given (up to isomorphism) by the construction

    \[ \operatorname{hTr}_{ \operatorname{\mathcal{E}}^{\vee } / \operatorname{\mathcal{C}}}: \mathrm{h} \mathit{\operatorname{\mathcal{C}}} \rightarrow \mathrm{h} \mathit{\operatorname{QCat}} \quad \quad C \mapsto \operatorname{\mathcal{E}}_{C}^{\operatorname{op}}. \]

    In particular, each fiber of $U^{\vee }$ is equivalent to the opposite of the corresponding fiber of $U$.

  • To every cocartesian fibration $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$, we will associate a cartesian fibration $U^{\dagger }: \operatorname{\mathcal{E}}^{\dagger } \rightarrow \operatorname{\mathcal{C}}^{\operatorname{op}}$ which we refer to as the cartesian conjugate of $U$, whose (contravariant) homotopy transport representation is given (up to isomorphism) by the construction

    \[ \operatorname{hTr}_{ \operatorname{\mathcal{E}}^{\dagger } / \operatorname{\mathcal{C}}^{\operatorname{op}} }: \mathrm{h} \mathit{\operatorname{\mathcal{C}}} \rightarrow \mathrm{h} \mathit{\operatorname{QCat}} \quad \quad C \mapsto \operatorname{\mathcal{E}}_{C}. \]

    In particular, each fiber of $U^{\dagger }$ is equivalent to the corresponding fiber of $U$.

For a fixed $\infty $-category (or simplicial set) $\operatorname{\mathcal{C}}$, the relationships between these constructions is summarized by the following diagram:

8.77
\begin{equation} \begin{gathered}\label{equation:big-diagram-dual-fibration} \xymatrix@C =50pt@R=100pt{ \{ \textnormal{Cocartesian fibrations $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$} \} \ar@ {<=>}[r]^{ U \longleftrightarrow U^{\operatorname{op}} } \ar@ {<=>}[dr]^{ U \longleftrightarrow U^{\vee } } \ar@ {<=>}[d]^{U \longleftrightarrow U^{\dagger }} & \{ \textnormal{Cartesian fibrations $U': \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}^{\operatorname{op}}$} \} \ar@ {<=>}[d]^{ V^{\dagger } \longleftrightarrow V} \\ \{ \textnormal{Cartesian fibrations $V': \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$} \} \ar@ {<=>}[r]^{V^{\operatorname{op}} \longleftrightarrow V} & \{ \textnormal{Cocartesian fibrations $V: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}^{\operatorname{op}}$} \} } \end{gathered} \end{equation}

If $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ is a cocartesian fibration of $\infty $-categories, then the opposite fibration $U^{\operatorname{op}}: \operatorname{\mathcal{E}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{C}}^{\operatorname{op}}$ is easy to describe at the level of simplicial sets (see §1.4.2). For the dual and conjugate fibrations $U^{\vee }$ and $U^{\dagger }$, this is somewhat more subtle. For example, the passage from a simplicial set $\operatorname{\mathcal{E}}$ to its opposite $\operatorname{\mathcal{E}}^{\operatorname{op}}$ is involutive, in the sense that there is a canonical isomorphism $\operatorname{\mathcal{E}}\simeq (\operatorname{\mathcal{E}}^{\operatorname{op}})^{\operatorname{op}}$ (in fact, if we adherre strictly to the convention of Construction 1.4.2.2, then the simplicial sets $\operatorname{\mathcal{E}}$ and $(\operatorname{\mathcal{E}}^{\operatorname{op}})^{\operatorname{op}}$ are identical). It is therefore natural to hope for the passage from a cocartesian fibration $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ to its dual $U^{\vee }: \operatorname{\mathcal{E}}^{\vee } \rightarrow \operatorname{\mathcal{C}}$ to have a similar property: heuristically, $\operatorname{\mathcal{E}}^{\vee }$ is obtained from $\operatorname{\mathcal{E}}$ by applying the preceding construction to each fiber of $U$. Unfortunately, it does not seem possible to give a construction where this property is visible at the level of simplicial sets: the best we can expect is that cocartesian duality is involutive up to equivalence, in the sense that the double dual $(U^{\vee })^{\vee }: (\operatorname{\mathcal{E}}^{\vee })^{\vee } \rightarrow \operatorname{\mathcal{C}}$ is equivalent to the original cocartesian fibration $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ in some natural way. To address this point, it will be convenient to view duality as a relationship which can exist between cocartesian fibrations $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ and $U^{\vee }: \operatorname{\mathcal{E}}^{\vee } \rightarrow \operatorname{\mathcal{C}}$ over the same base, rather than as an operation which takes $U$ as input and produces $U^{\vee }$ as an output. Similarly, we will view conjugacy as a relationship which can exist between a cocartesian fibration $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ and a cartesian fibration $U^{\dagger }: \operatorname{\mathcal{E}}^{\dagger } \rightarrow \operatorname{\mathcal{C}}^{\operatorname{op}}$ over the opposite base. Our first goal will be to describe these relationships more precisely:

  • Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a cocartesian fibration of simplicial sets. We will say that a cartesian fibration $U^{\dagger }: \operatorname{\mathcal{E}}^{\dagger } \rightarrow \operatorname{\mathcal{C}}^{\operatorname{op}}$ is a cartesian conjugate of $U$ if there exists a commutative diagram

    \[ \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{E}}^{\dagger } \times _{ \operatorname{\mathcal{C}}^{\operatorname{op}} } \operatorname{Tw}(\operatorname{\mathcal{C}}) \ar [dr] \ar [rr]^{T} & & \operatorname{\mathcal{E}}\ar [dl]^{U} \\ & \operatorname{\mathcal{C}}& } \]

    satisfying two axioms (Definition 8.6.1.1), one of which requires that $T$ restricts to an equivalence of $\infty $-categories $T_{C}: \operatorname{\mathcal{E}}^{\dagger }_{C} \rightarrow \operatorname{\mathcal{E}}_{C}$ for each vertex $C \in \operatorname{\mathcal{C}}$. In §8.6.1, we develop the properties of this definition and give some examples.

  • Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a cocartesian fibration of simplicial sets. We say that a cocartesian fibration $U^{\vee }: \operatorname{\mathcal{E}}^{\vee } \rightarrow \operatorname{\mathcal{C}}$ is a cocartesian dual of $U$ if there exists a left fibration of simplicial sets $\lambda : \widetilde{\operatorname{\mathcal{E}}} \rightarrow \operatorname{\mathcal{E}}^{\vee } \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}$ satisfying two axioms (Definition 8.6.3.1), one of which requires that for each vertex $C \in \operatorname{\mathcal{C}}$, the induced map $\lambda _{C}: \widetilde{\operatorname{\mathcal{E}}}_{C} \rightarrow \operatorname{\mathcal{E}}^{\vee }_{C} \times \operatorname{\mathcal{E}}_{C}$ is a balanced coupling of $\infty $-categories (Definition 8.2.6.1). This guarantees in particular that $\operatorname{\mathcal{E}}^{\vee }_{C}$ is equivalent to the opposite $\infty $-category $\operatorname{\mathcal{E}}_{C}^{\operatorname{op}}$ (Corollary 8.2.6.6). In §8.6.3, we develop the properties of this definition and give some examples.

Our next goal is to show that, if $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ is a cocartesian fibration of simplicial sets, then it admits a cartesian conjugate $U^{\dagger }: \operatorname{\mathcal{E}}^{\dagger } \rightarrow \operatorname{\mathcal{C}}^{\operatorname{op}}$ and a cocartesian dual $U^{\vee }: \operatorname{\mathcal{E}}^{\vee } \rightarrow \operatorname{\mathcal{C}}$, which are uniquely determined up to equivalence. In each case, we will prove existence (and ultimately uniqueness) using explicit constructions at the level of simplicial sets. To fix ideas, let us first assume that $\operatorname{\mathcal{C}}= \Delta ^0$. In this case, constructing a dual of cocartesian fibration $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ is tantamount to constructing an $\infty $-category $\operatorname{\mathcal{E}}^{\vee }$ which is equivalent to the opposite of $\operatorname{\mathcal{E}}$. We consider three different solutions to this problem:

$(a)$

We can take $\operatorname{\mathcal{E}}^{\vee }$ to be the opposite $\infty $-category $\operatorname{\mathcal{E}}^{\operatorname{op}}$ itself, given concretely by Construction 1.4.2.2.

$(b)$

We can take $\operatorname{\mathcal{E}}^{\vee }$ to be the $\infty $-category of corepresentable functors $\operatorname{Fun}^{\operatorname{corep}}( \operatorname{\mathcal{E}}, \operatorname{\mathcal{S}})$. This is equivalent to $\operatorname{\mathcal{E}}^{\operatorname{op}}$ by virtue of the $\infty $-categorical version of Yoneda's lemma (Theorem 8.3.3.13), at least if $\operatorname{\mathcal{E}}$ is locally small.

$(c)$

We can take $\operatorname{\mathcal{E}}^{\vee }$ to be the $\infty $-category $\operatorname{Cospan}^{\mathrm{iso}, \mathrm{all}}(\operatorname{\mathcal{E}})$ of Variant 8.1.7.14, whose morphisms are given by cospans $X \xrightarrow {f} B \xleftarrow {g} Y$ in the $\infty $-category $\operatorname{\mathcal{E}}$ where $f$ is required to be an isomorphism. By virtue of Proposition 8.1.7.6, this is also equivalent to the $\infty $-category $\operatorname{\mathcal{E}}^{\operatorname{op}}$.

Each of these approaches can be adapted to more general situations. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a cocartesian fibration of simplicial sets.

  • Assume that $\operatorname{\mathcal{C}}$ is an $\infty $-category. In §8.6.2, we define a fibration

    \[ \operatorname{Fun}^{\operatorname{CCart}}_{ / \operatorname{\mathcal{C}}}( \operatorname{Tw}(\operatorname{\mathcal{C}}) / \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{E}}) \rightarrow \operatorname{\mathcal{C}}^{\operatorname{op}} \]

    and show that it is a cartesian conjugate of $U$ (Proposition 8.6.2.3). In the special case $\operatorname{\mathcal{C}}= \Delta ^0$, this definition reproduces the original $\infty $-category $\operatorname{\mathcal{E}}$; consequently, after passing to opposite $\infty $-categories, it can be viewed as a relative version of construction $(a)$.

  • Assume that, for each vertex $C \in \operatorname{\mathcal{C}}$, the $\infty $-category $\operatorname{\mathcal{E}}_{C}$ is locally small. In §8.6.4, we define a fibration $\operatorname{Fun}^{\operatorname{corep}}( \operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}, \operatorname{\mathcal{S}}) \rightarrow \operatorname{\mathcal{C}}$ and show that it is a cocartesian dual of $U$ (Proposition 8.6.4.8). In the special case $\operatorname{\mathcal{C}}= \Delta ^0$, this definition reproduces the $\infty $-category of corepresentable functors $\operatorname{Fun}^{\operatorname{corep}}( \operatorname{\mathcal{E}}, \operatorname{\mathcal{S}})$; consequently, it can be viewed as a relative version of construction $(b)$.

  • Let $\operatorname{Cospan}^{\operatorname{CCart}}( \operatorname{\mathcal{E}}/\operatorname{\mathcal{C}})$ denote the fiber product $\operatorname{\mathcal{C}}\times _{ \operatorname{Cospan}(\operatorname{\mathcal{C}}) } \operatorname{Cospan}^{W, \mathrm{all}}(\operatorname{\mathcal{E}})$, where $W$ denotes the collection of all $U$-cocartesian edges of $\operatorname{\mathcal{E}}$. In §8.6.5, we show that the projection map $\operatorname{Cospan}^{\operatorname{CCart}}(\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{C}}$ is a cocartesian dual of $U$ (Theorem 8.6.5.6). In the special case $\operatorname{\mathcal{C}}= \Delta ^0$, this definition reproduces the $\infty $-category $\operatorname{Cospan}^{\mathrm{iso}, \mathrm{all}}(\operatorname{\mathcal{E}})$; consequently, it can be viewed as a relative version of construction $(c)$.

Remark 8.6.0.1. Ultimately, each of the constructions described above gives rise to essentially the same object. However, it will be useful to consider all three, since each reveals different facets of the overall picture. Fix a cocartesian fibration of simplicial sets $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$.

  • The construction of §8.6.2 can be used to show that $U$ admits a cartesian conjugate $U^{\dagger }: \operatorname{\mathcal{E}}^{\dagger } \rightarrow \operatorname{\mathcal{C}}^{\operatorname{op}}$ (Corollary 8.6.2.4), which is unique up to equivalence if $\operatorname{\mathcal{C}}$ is an $\infty $-category (Corollary 8.6.2.9). However, it is not obvious that the opposite fibration $U^{\dagger , \operatorname{op}}: \operatorname{\mathcal{E}}^{\dagger , \operatorname{op}} \rightarrow \operatorname{\mathcal{C}}$ is a cocartesian dual of $U$ (in the sense of Definition 8.6.3.1).

  • The construction of §8.6.4 can be used to show that $U$ admits a cocartesian dual $U^{\vee }: \operatorname{\mathcal{E}}^{\vee } \rightarrow \operatorname{\mathcal{C}}$, which is uniquely determined up to equivalence (Theorem 8.6.4.1). However, it is not obvious that the opposite fibration $U^{\vee ,\operatorname{op}}: \operatorname{\mathcal{E}}^{\vee ,\operatorname{op}} \rightarrow \operatorname{\mathcal{C}}^{\operatorname{op}}$ is a cartesian conjugate of $U$ (in the sense of Definition 8.6.1.1).

  • The construction of §8.6.5 produces a specific example of a fibration $U^{\vee }: \operatorname{\mathcal{E}}^{\vee } \rightarrow \operatorname{\mathcal{C}}$ which is a cocartesian dual of $U$. From this perspective, it is not obvious that the cocartesian dual is unique. However, it enjoys another form of uniqueness: in §8.6.6, we show that every cartesian conjugate of $U$ is equivalent to the fibration $U^{\vee , \operatorname{op}}$ (Proposition 8.6.6.6). Combining this with the existence of cartesian conjugates (obtained from §8.6.2) and the uniqueness of cocartesian duals (obtained from §8.6.4), we deduce that the diagram (8.77) is commutative: that is, a fibration $U^{\dagger }: \operatorname{\mathcal{E}}^{\dagger } \rightarrow \operatorname{\mathcal{C}}^{\operatorname{op}}$ is a cartesian conjugate of $U$ if and only if $U^{\dagger , \operatorname{op}}: \operatorname{\mathcal{E}}^{\dagger , \operatorname{op}} \rightarrow \operatorname{\mathcal{C}}$ is a cocartesian dual of $U$ (Proposition 8.6.6.1).

Remark 8.6.0.2 (Duality via Transport Representations). Let $\operatorname{\mathcal{QC}}$ denote the $\infty $-category of small $\infty $-categories (Construction 5.5.4.1). Then $\operatorname{\mathcal{QC}}$ admits an autoequivalence $\sigma : \operatorname{\mathcal{QC}}\rightarrow \operatorname{\mathcal{QC}}$, given on objects by the formula $\sigma (\operatorname{\mathcal{A}}) = \operatorname{\mathcal{A}}^{\operatorname{op}}$ (see Construction 8.6.7.6). Recall that an (essentially small) cocartesian fibrations $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ is determined, up to equivalence, by a functor $\operatorname{Tr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{QC}}$, which we refer to as the covariant transport representation of $U$ (Definition 5.6.5.1). In §8.6.7, we show that a cocartesian fibration $U^{\vee }: \operatorname{\mathcal{E}}^{\vee } \rightarrow \operatorname{\mathcal{C}}$ is a cocartesian dual of $U$ if and only if its covariant transport representation is isomorphic to the composition $\operatorname{\mathcal{C}}\xrightarrow { \operatorname{Tr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}} } \operatorname{\mathcal{QC}}\xrightarrow {\sigma } \operatorname{\mathcal{QC}}$ (Proposition 8.6.7.12). This gives another construction of the cocartesian dual of $U$ (albeit one which is cumbersome to work with).

Remark 8.6.0.3. The commutativity of the diagram (8.77) is not immediately obvious: the notions of cartesian conjugacy and cocartesian duality have separate definitions that are a priori unrelated to one another. We will maintain this separation in our exposition: the portions of this section which discuss conjugate fibrations (§8.6.1 and §8.6.2) can be read independently of those which discuss dual fibrations (§8.6.3, §8.6.4, §8.6.5, and §8.6.7). Only in §8.6.6 will we consider both notions simultaneously.

Remark 8.6.0.4. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a cocartesian fibration of simplicial sets. The construction of the dual fibration $U^{\vee }: \operatorname{Cospan}^{\operatorname{CCart}}(\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{C}}$ studied in §8.6.5 appears in work of Barwick, Glasman, and Nardin; see [BGN].

Structure

  • Subsection 8.6.1: Conjugate Fibrations
  • Subsection 8.6.2: Existence of Conjugate Fibrations
  • Subsection 8.6.3: Dual Fibrations
  • Subsection 8.6.4: Existence of Dual Fibrations
  • Subsection 8.6.5: Cocartesian Duality via Cospans
  • Subsection 8.6.6: Comparison of Dual and Conjugate Fibrations
  • Subsection 8.6.7: The Opposition Functor