Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

8.6.8 Contravariant Transport Representations

Let $\operatorname{\mathcal{QC}}$ denote the $\infty $-category of (small) $\infty $-categories (Construction 5.5.4.1) and let $\operatorname{\mathcal{C}}$ be a simplicial set. In ยง5.6, we showed that the formation of covariant transport representations determines a bijection

\[ \xymatrix { \textnormal{(Essentially small) cocartesian fibrations $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$} \} / \textnormal{Equivalence} \ar [d] \\ \{ \textnormal{Diagrams $\operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{QC}}$} \} / \textnormal{Isomorphism} } \]

(Theorem 5.6.0.2). Combined with the theory of conjugate fibrations, we obtain a similar classification for cartesian fibrations.

Definition 8.6.8.1. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a cartesian fibration of simplicial sets. We say that a diagram $\mathscr {F}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{QC}}$ is a contravariant transport representation for $U$ if $U$ is a cartesian conjugate to the cocartesian fibration $V: \int _{\operatorname{\mathcal{C}}^{\operatorname{op}}} \mathscr {F} \rightarrow \operatorname{\mathcal{C}}^{\operatorname{op}}$ of Proposition 5.6.2.2.

Remark 8.6.8.2. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a cartesian fibration of simplicial sets. Unwinding the definitions, we see that a diagram $\mathscr {F}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{QC}}$ is a contravariant transport representation for $U$ if and only if there exists a commutative diagram of simplicial sets

\[ \xymatrix { \operatorname{\mathcal{E}}\times _{\operatorname{\mathcal{C}}} \operatorname{Tw}(\operatorname{\mathcal{C}}^{\operatorname{op}} ) \ar [rr]^{T} \ar [dr] & & \int _{ \operatorname{\mathcal{C}}^{\operatorname{op}} } \mathscr {F} \ar [dl]^{V} \\ & \operatorname{\mathcal{C}}^{\operatorname{op}} & } \]

which exhibits $U$ as a cartesian conjugate of $V$, in the sense of Definition 8.6.1.1. If this condition is satisfied, we say that $T$ exhibits $\mathscr {F}$ as a contravariant transport representation for $U$. In this case, for every vertex $C \in \operatorname{\mathcal{C}}$, we have equivalences of $\infty $-categories $\operatorname{\mathcal{E}}_{C} \xrightarrow {T_ C} \{ C\} \times _{ \operatorname{\mathcal{C}}^{\operatorname{op}} } \int _{\operatorname{\mathcal{C}}^{\operatorname{op}} } \mathscr {F} \leftarrow \mathscr {F}(C)$ (see Example 5.6.2.19).

Proposition 8.6.8.3. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be an essentially small cartesian fibration of simplicial sets. Then $U$ admits a contravariant transport representation $\mathscr {F}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{QC}}$, which is uniquely determined up to isomorphism. Moreover, the formation of contravariant transport representations induces a bijection

\[ \xymatrix { \textnormal{(Essentially small) cartesian fibrations $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$} \} / \textnormal{Equivalence} \ar [d] \\ \{ \textnormal{Diagrams $\operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{QC}}$} \} / \textnormal{Isomorphism}. } \]

Variant 8.6.8.4. It will sometimes be useful to apply Definition 8.6.8.1 to cartesian fibrations $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ which are not essentially small. Let $\kappa $ be an uncountable cardinal. We say that a diagram $\mathscr {F}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{QC}}^{< \kappa }$ is a contravariant transport representation for $U$ if $U$ is cartesian conjugate to the cocartesian fibration $\int _{\operatorname{\mathcal{C}}} \mathscr {F} \rightarrow \operatorname{\mathcal{C}}^{\operatorname{op}}$. Such a diagram exists if and only if the cartesian fibration $U$ is essentially $\kappa $-small, in which case it is uniquely determined up to isomorphism. Moreover, the formation of contravariant transport representations induces a bijection

\[ \xymatrix { \textnormal{Essentially $\kappa $-small cartesian fibrations $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$} \} / \textnormal{Equivalence} \ar [d] \\ \{ \textnormal{Diagrams $\operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{QC}}^{< \kappa }$} \} / \textnormal{Isomorphism}. } \]

Notation 8.6.8.5. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be an essentially small cartesian fibration of simplicial sets. We will often write $\operatorname{Tr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}$ for a contravariant transport representation of $U$, regarded as an object of the $\infty $-category $\operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{QC}})$. Beware that this object is only well-defined up to isomorphism (any diagram $\mathscr {F}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{QC}}$ which is isomorphic to $\operatorname{Tr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}$ is also a contravariant transport representation for $U$).

Warning 8.6.8.6. We have now attached two meanings to the notation $\operatorname{Tr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}$:

  • If $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ is an (essentially small) cartesian fibration, then $\operatorname{Tr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}$ can denote the contravariant transport representation of $U$, regarded as an object of $\operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{QC}})$ (Notation 8.6.8.5).

  • If $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ is an (essentially small) cocartesian fibration, then $\operatorname{Tr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}$ can denote the covariant transport representation of $U$, regarded as an object of $\operatorname{Fun}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{QC}})$ (Notation 5.6.5.16).

In the case where $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ is both a cartesian and cocartesian fibration, these usages are in conflict. However, in this case there is a simple relationship between the covariant and contravariant transport representations of $U$: see Remark 8.6.8.18.

Remark 8.6.8.7. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be an essentially small cartesian fibration of simplicial sets. and let $\operatorname{Tr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{QC}}$ be its contravariant transport representation. Then the opposite functor $U^{\operatorname{op}}: \operatorname{\mathcal{E}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{C}}^{\operatorname{op}}$ is an essentially small cocartesian fibration which admits a covariant transport representation $\operatorname{Tr}_{\operatorname{\mathcal{E}}^{\operatorname{op}} / \operatorname{\mathcal{C}}^{\operatorname{op}} }: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{QC}}$. In this case, we can identify $\operatorname{Tr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}$ with the composition $\sigma \circ \operatorname{Tr}_{\operatorname{\mathcal{E}}^{\operatorname{op}}/ \operatorname{\mathcal{C}}^{\operatorname{op}} }$, where $\sigma : \operatorname{\mathcal{QC}}\rightarrow \operatorname{\mathcal{QC}}$ is the opposition functor introduced in Construction 8.6.7.6 (given on objects by the construction $\operatorname{\mathcal{D}}\mapsto \operatorname{\mathcal{D}}^{\operatorname{op}}$). This follows by combining Propositions 8.6.6.1 and 8.6.7.12.

Example 8.6.8.8. Let $\operatorname{\mathcal{C}}$ be a category, let $\mathscr {F}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \mathbf{Cat}$ be a functor of $2$-categories, and let $\int ^{\operatorname{\mathcal{C}}} \mathscr {F}$ be the category of elements of $\mathscr {F}$ (Definition 5.6.1.4). Then the forgetful functor

\[ U: \operatorname{N}_{\bullet }( \int ^{\operatorname{\mathcal{C}}} \mathscr {F} ) \rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) \]

is a cartesian fibration of $\infty $-categories (Corollary 5.6.1.16). The contravariant transport representation of $U$ can be identified with the Duskin nerve of the functor $\mathscr {F}$, where we identify $\operatorname{N}_{\bullet }^{\operatorname{D}}( \operatorname{Pith}(\mathbf{Cat}) )$ with a full subcategory of $\operatorname{\mathcal{QC}}$ (see Remark 5.5.4.10). This follows by combining Example 8.6.1.9 with Proposition 5.6.3.4.

Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be an essentially small cartesian fibration of simplicial sets. Then the contravariant transport representation $\operatorname{Tr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}$ of Notation 8.6.8.5 can be regarded as a refinement of the homotopy transport representation $\operatorname{hTr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}: \mathrm{h} \mathit{\operatorname{\mathcal{C}}}^{\operatorname{op}} \rightarrow \mathrm{h} \mathit{\operatorname{QCat}}$ introduced in Construction 5.2.5.7.

Proposition 8.6.8.9. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a cartesian fibration of simplicial sets, let $\mathscr {F}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{QC}}$ be a diagram, and let $T: \operatorname{\mathcal{E}}\times _{\operatorname{\mathcal{C}}} \operatorname{Tw}(\operatorname{\mathcal{C}}^{\operatorname{op}} ) \rightarrow \int _{\operatorname{\mathcal{C}}^{\operatorname{op}} } \mathscr {F}$ exhibit $\mathscr {F}$ as a contravariant transport representation for $U$ (Remark 8.6.8.2). Then, for every edge $e: C \rightarrow C'$ of $\operatorname{\mathcal{C}}$, the diagram of $\infty $-categories

\[ \xymatrix { \operatorname{\mathcal{E}}_{C'} \ar [d]^{ e^{\ast } } \ar [r]^{T_{C'}}_{\sim } & \{ C'\} \times _{\operatorname{\mathcal{C}}^{\operatorname{op}} } \int _{\operatorname{\mathcal{C}}^{\operatorname{op}} } \mathscr {F} \ar [d]^{ e_{!} } & \mathscr {F}(C') \ar [l]^{\sim } \ar [d]^{ \mathscr {F}(e) } \\ \operatorname{\mathcal{E}}_{C} \ar [r]^{T_{C'}}_{\sim } & \{ C\} \times _{\operatorname{\mathcal{C}}^{\operatorname{op}} } \int _{\operatorname{\mathcal{C}}^{\operatorname{op}} } \mathscr {F} & \mathscr {F}(C) \ar [l]^{\sim } } \]

commutes up to isomorphism. Here the horizontal maps are the equivalences of Remark 8.6.8.2, $e^{\ast }$ is given by contravariant transport for the cartesian fibration $U$, and $e_{!}$ is given by covariant transport for the cocartesian fibration $\int _{\operatorname{\mathcal{C}}^{\operatorname{op}} } \mathscr {F} \rightarrow \operatorname{\mathcal{C}}^{\operatorname{op}}$.

Proof. The commutativity of the left square follows from Proposition 8.6.1.5, and the commutativity of the right square from Corollary 5.6.2.23. $\square$

Corollary 8.6.8.10. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a cartesian fibration of simplicial sets and let $\operatorname{Tr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{QC}}$ be a contravariant transport representation for $U$. Then the induced map of homotopy categories $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}^{\operatorname{op}} \rightarrow \mathrm{h} \mathit{\operatorname{\mathcal{QC}}}$ is isomorphic to the homotopy transport representation $\operatorname{hTr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}$ of Construction 5.2.5.7..

Recall that, if $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ is a cartesian fibration of simplicial sets, then $\operatorname{Fun}_{ / \operatorname{\mathcal{C}}}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{E}})$ denotes the full subcategory of $\operatorname{Fun}_{ / \operatorname{\mathcal{C}}}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{E}})$ spanned by those sections $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{E}}$ which carry each edge of $\operatorname{\mathcal{C}}$ to a $U$-cartesian edge of $\operatorname{\mathcal{E}}$ (Variant 5.3.1.11).

Proposition 8.6.8.11. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a cartesian fibration between small simplicial sets. Then $\operatorname{Fun}^{\operatorname{Cart}}_{ / \operatorname{\mathcal{C}}}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{E}})$ is a limit of the contravariant transport representation $\operatorname{Tr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{QC}}$.

Proof. Let us identify $\operatorname{Fun}^{\operatorname{Cart}}_{/\operatorname{\mathcal{C}}}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{E}})$ with the opposite of the $\infty $-category $\operatorname{Fun}^{\operatorname{CCart}}_{ / \operatorname{\mathcal{C}}^{\operatorname{op}} }( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{E}}^{\operatorname{op}} )$ of cocartesian sections of $U^{\operatorname{op}}$. By virtue of Remark 8.6.8.7 (and the fact that the opposition functor $\sigma : \operatorname{\mathcal{QC}}\rightarrow \operatorname{\mathcal{QC}}$ is an equivalence of $\infty $-categories), it will suffice to show that $\operatorname{Fun}^{\operatorname{CCart}}_{ / \operatorname{\mathcal{C}}^{\operatorname{op}} }( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{E}}^{\operatorname{op}} )$ is a limit of the covariant transport representation $\operatorname{Tr}_{ \operatorname{\mathcal{E}}^{\operatorname{op}} / \operatorname{\mathcal{C}}^{\operatorname{op}} }: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{QC}}$, which is the content of Proposition 7.4.4.1. $\square$

Remark 8.6.8.12. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a cocartesian fibration of simplicial sets and let $U^{\dagger }: \operatorname{\mathcal{E}}^{\dagger } \rightarrow \operatorname{\mathcal{C}}^{\operatorname{op}}$ be a cartesian fibration which is conjugate to $U$. By definition, a diagram $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{QC}}$ is a contravariant transport representation for $U^{\dagger }$ if and only if it is a covariant transport representation for $U$. In this case:

  • Proposition 7.4.4.1 asserts that the limit $\varprojlim (\mathscr {F})$ can be computed as the $\infty $-category $\operatorname{Fun}^{\operatorname{CCart}}_{/\operatorname{\mathcal{C}}}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{E}})$ of cocartesian sections of $U$.

  • Proposition 8.6.8.11 asserts that the limit $\varprojlim (\mathscr {F})$ can be computed as the $\infty $-category $\operatorname{Fun}^{\operatorname{Cart}}_{/ \operatorname{\mathcal{C}}^{\operatorname{op}} }( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{E}}^{\dagger })$ of cartesian sections of $\operatorname{\mathcal{E}}^{\dagger }$.

To identify these conditions, it suffices to observe that the $\infty $-categories $\operatorname{Fun}^{\operatorname{CCart}}_{/\operatorname{\mathcal{C}}}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{E}})$ and $\operatorname{Fun}^{\operatorname{Cart}}_{/ \operatorname{\mathcal{C}}^{\operatorname{op}} }( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{E}}^{\dagger })$ are equivalent. In fact, we can be more precise. Assume for simplicity that $\operatorname{\mathcal{C}}$ is an $\infty $-category, and fix a functor $T: \operatorname{\mathcal{E}}^{\dagger } \times _{ \operatorname{\mathcal{C}}^{\operatorname{op}} } \operatorname{Tw}(\operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{E}}$ which exhibits $U^{\dagger }$ as a cartesian conjugate of $U$ (Definition 8.6.1.1). Then $T$ determines a canonical equivalence $\Theta : \operatorname{Fun}^{\operatorname{CCart}}_{/\operatorname{\mathcal{C}}}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{E}}) \rightarrow \operatorname{Fun}^{\operatorname{Cart}}_{/ \operatorname{\mathcal{C}}^{\operatorname{op}} }( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{E}}^{\dagger })$, which is characterized (up to isomorphism) by the requirement that the diagram of $\infty $-categories

\[ \xymatrix { \operatorname{Fun}^{\operatorname{CCart}}_{/\operatorname{\mathcal{C}}}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{E}}) \ar [rr]^{\Theta } \ar [dr] & & \operatorname{Fun}^{\operatorname{Cart}}_{ / \operatorname{\mathcal{C}}^{\operatorname{op}} }( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{E}}^{\dagger } ) \ar [dl] \\ & \operatorname{Fun}_{ / \operatorname{\mathcal{C}}}( \operatorname{Tw}(\operatorname{\mathcal{C}}), \operatorname{\mathcal{E}}) & } \]

commutes up to isomorphism. Here the left vertical map is given by precomposition with the projection $\lambda _{+}: \operatorname{Tw}(\operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{C}}$, and the right vertical map is given by pullback along the projection $\lambda _{-}: \operatorname{Tw}(\operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{C}}^{\operatorname{op}}$ followed by postcomposition with $T$. See Corollary 8.6.2.12 for a more general assertion.

For some applications, it will be convenient to have a more refined version of Proposition 8.6.8.11.

Proposition 8.6.8.13. Let $\kappa $ be an uncountable cardinal, let $\overline{U}: \overline{\operatorname{\mathcal{E}}} \rightarrow \operatorname{\mathcal{C}}^{\triangleright }$ be a cartesian fibration of simplicial sets which is essentially $\kappa $-small. Set $\operatorname{\mathcal{E}}= \operatorname{\mathcal{C}}\times _{ \operatorname{\mathcal{C}}^{\triangleright } } \overline{\operatorname{\mathcal{E}}}$, so that $\overline{U}$ restricts to a cartesian fibration $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$. The following conditions are equivalent:

$(1)$

The contravariant transport representation $\operatorname{Tr}_{ \overline{\operatorname{\mathcal{E}}} / \operatorname{\mathcal{C}}^{\triangleright } }: ( \operatorname{\mathcal{C}}^{\triangleright } )^{\operatorname{op}} \rightarrow \operatorname{\mathcal{QC}}^{< \kappa }$ is a limit diagram.

$(2)$

The restriction functor

\[ \operatorname{Fun}^{\operatorname{Cart}}_{ / \operatorname{\mathcal{C}}^{\triangleright } }( \operatorname{\mathcal{C}}^{\triangleright }, \overline{\operatorname{\mathcal{E}}} ) \rightarrow \operatorname{Fun}^{\operatorname{Cart}}_{ / \operatorname{\mathcal{C}}}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{E}}) \]

is an equivalence of $\infty $-categories.

Proof. As in the proof of Proposition 8.6.8.11, this reduces immediately to the corresponding assertion for cocartesian fibrations, which follows from Theorem 7.4.4.6. $\square$

Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ and $F': \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{E}}$ be functors of $\infty $-categories. Recall that, if $F$ and $F'$ admit right adjoints $G: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{C}}$ and $G': \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{D}}$, then the composite functor $(F' \circ F): \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{E}}$ also admits a right adjoint, which can be computed as the composition $G \circ G'$ (Remark 6.2.1.8). Stated more informally, the formation of adjoint functors is compatible with composition, at least up to homotopy. We now prove a more refined version of this statement, which shows that the formation of adjoints is compatible with composition up to coherent homotopy. To formulate this refinement, we will need some terminology.

Notation 8.6.8.14. Let $\operatorname{\mathcal{QC}}$ be the $\infty $-category of (small) $\infty $-categories (Construction 5.5.4.1)). We define (non-full) subcategories $\operatorname{\mathcal{QC}}_{\operatorname{LAdj}} \subset \operatorname{\mathcal{QC}}\supset \operatorname{\mathcal{QC}}_{\operatorname{RAd}}$ as follows:

  • Every object of $\operatorname{\mathcal{QC}}$ belongs to the subcategories $\operatorname{\mathcal{QC}}_{\operatorname{LAdj}}$ and $\operatorname{\mathcal{QC}}_{\operatorname{RAd}}$.

  • Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor between (small) $\infty $-categories, which we regard as a morphism in $\operatorname{\mathcal{QC}}$. Then $F$ belongs to $\operatorname{\mathcal{QC}}_{\operatorname{LAdj}}$ if and only if $F$ is a left adjoint: that is, there exists a functor $G: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{C}}$ which is right adjoint to $F$. Similarly, $F$ belongs to $\operatorname{\mathcal{QC}}_{\operatorname{RAd}}$ if and only if $F$ is a right adjoint.

Remark 8.6.8.15. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be an essentially small cocartesian fibration of simplicial sets. Then $U$ is a cartesian fibration if and only if the covariant transport representation $\operatorname{Tr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{QC}}$ factors through the full subcategory $\operatorname{\mathcal{QC}}_{\operatorname{LAdj}} \subset \operatorname{\mathcal{QC}}$. Similarly, if $U': \operatorname{\mathcal{E}}' \rightarrow \operatorname{\mathcal{C}}$ is an essentially small cartesian fibration, then $U'$ is a cocartesian fibration if and only if its contravariant transport representation $\operatorname{Tr}_{\operatorname{\mathcal{E}}'/\operatorname{\mathcal{C}}}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{QC}}$ factors through the subcategory $\operatorname{\mathcal{QC}}_{\operatorname{RAd}} \subset \operatorname{\mathcal{QC}}$. See Proposition 6.2.3.6.

Construction 8.6.8.16. Let $\operatorname{\mathcal{QC}}_{\operatorname{Obj}}$ denote the $\infty $-category introduced in Definition 5.5.6.10 (whose objects are given by pairs $(\operatorname{\mathcal{C}}, C)$, where $\operatorname{\mathcal{C}}$ is a small $\infty $-category and $C \in \operatorname{\mathcal{C}}$ is an object). Let $U: \operatorname{\mathcal{QC}}_{\operatorname{Obj}} \rightarrow \operatorname{\mathcal{QC}}$ be the forgetful functor, given on objects by the construction $(\operatorname{\mathcal{C}}, C) \mapsto \operatorname{\mathcal{C}}$. We let $\operatorname{\mathcal{QC}}_{\operatorname{Obj}}^{0} \subseteq \operatorname{\mathcal{QC}}_{\operatorname{Obj}}$ denote the inverse image of the subcategory $\operatorname{\mathcal{QC}}_{\operatorname{LAdj}} \subset \operatorname{\mathcal{QC}}$. It follows from Remark 8.6.8.15 that $U$ restricts to a forgetful functor $U^{0}: \operatorname{\mathcal{QC}}_{\operatorname{Obj}}^{0} \rightarrow \operatorname{\mathcal{QC}}_{\operatorname{LAdj}}$ which is both a cartesian fibration and a cocartesian fibration. Applying Proposition 8.6.8.3 (and Remark 8.6.8.15), we deduce that $U^{0}$ admits a contravariant transport representation $\Psi : \operatorname{\mathcal{QC}}_{\operatorname{LAdj}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{QC}}_{\operatorname{RAd}}$, which is uniquely determined up to isomorphism. We will refer to $\Psi $ as the formation-of-adjoints functor.

Remark 8.6.8.17. The formation-of-adjoints functor $\Psi : \operatorname{\mathcal{QC}}_{\operatorname{LAdj}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{QC}}_{\operatorname{RAd}}$ induces a functor of homotopy categories $\mathrm{h} \mathit{\Psi }: \mathrm{h} \mathit{ \operatorname{\mathcal{QC}}_{\operatorname{LAdj}}^{\operatorname{op}} } \rightarrow \mathrm{h} \mathit{\operatorname{\mathcal{QC}}_{\operatorname{RAd}}} \subset \mathrm{h} \mathit{\operatorname{\mathcal{QC}}}$, which is a homotopy transport representation for the cartesian fibration $\operatorname{\mathcal{QC}}_{\operatorname{Obj}}^{0} \rightarrow \operatorname{\mathcal{QC}}_{\operatorname{LAdj}}$ (Corollary 8.6.8.10). By virtue of Proposition 6.2.3.6, this functor can be described more concretely as follows:

  • The functor $\mathrm{h} \mathit{\Psi }$ carries every small $\infty $-category $\operatorname{\mathcal{C}}$ (viewed as an object of $\operatorname{\mathcal{QC}}_{\operatorname{LAdj}}$) to itself (viewed as an object of $\operatorname{\mathcal{QC}}_{\operatorname{RAd}}$).

  • If $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ is a functor between small $\infty $-categories which admits a right adjoint $G: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{C}}$, then the functor $\mathrm{h} \mathit{\Psi }$ carries the isomorphism class $[F]$ (viewed as a morphism in the homotopy cateogry $\mathrm{h} \mathit{\operatorname{\mathcal{QC}}_{\operatorname{LAdj}}}$) to the isomorphism class $[G]$ (viewed as a morphism in the homotopy category $\mathrm{h} \mathit{ \operatorname{\mathcal{QC}}_{\operatorname{RAd}} }$.

Remark 8.6.8.18. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be an essentially small cocartesian fibration of simplicial sets, and let $\operatorname{Tr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{QC}}$ denote the covariant transport representation for $U$. Assume that $U$ is also a cartesian fibration, so that $\operatorname{Tr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}$ factors through the subcategory $\operatorname{\mathcal{QC}}_{\operatorname{LAdj}} \subset \operatorname{\mathcal{QC}}$. Then the contravariant transport representation of $U$ is given by the composition

\[ \operatorname{\mathcal{C}}^{\operatorname{op}} \xrightarrow { \operatorname{Tr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}^{\operatorname{op}} } \operatorname{\mathcal{QC}}_{\operatorname{LAdj}}^{\operatorname{op}} \xrightarrow { \Psi } \operatorname{\mathcal{QC}}_{\operatorname{RAd}} \subset \operatorname{\mathcal{QC}}, \]

where $\Psi $ is the formation-of-adjoints functor (Construction 8.6.8.16). The proof reduces to the universal case $\operatorname{\mathcal{C}}= \operatorname{\mathcal{QC}}_{\operatorname{LAdj}}$, in which case it is immediate from the definition of $\Psi $.

Proposition 8.6.8.19. The formation-of-adjoints functor $\Psi : \operatorname{\mathcal{QC}}_{\operatorname{LAdj}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{QC}}_{\operatorname{RAd}}$ is an equivalence of $\infty $-categories.

Proof. Let $\operatorname{\mathcal{C}}$ be a simplicial set. We wish to show that composition with $\Psi $ induces a bijection

\[ \{ \textnormal{Diagrams $\operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{QC}}_{\operatorname{LAdj}}$} \} / \textnormal{Isomorphism} \rightarrow \{ \textnormal{Diagrams $\operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{QC}}_{\operatorname{RAd}}$} \} / \textnormal{Isomorphism}. \]

Using Theorem 5.6.0.2 and Remark 8.6.8.18, we can identify the left hand side with the set of equivalence classes of (essentially small) cocartesian fibrations $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ which are also cartesian fibrations. Under this identification, the map is given by the formation of contravariant transport representations, and is therefore bijective by virtue of Proposition 8.6.8.3 (and Remark 8.6.8.17). $\square$