Notation 8.6.8.5. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be an essentially small cartesian fibration of simplicial sets. We will often write $\operatorname{Tr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}$ for a contravariant transport representation of $U$, regarded as an object of the $\infty $-category $\operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{QC}})$. Beware that this object is only well-defined up to isomorphism (any diagram $\mathscr {F}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{QC}}$ which is isomorphic to $\operatorname{Tr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}$ is also a contravariant transport representation for $U$).
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$